BBOWDA Java API

Kevin Kofler <kofler @dagopt.com>
Copyright (C) 2006-2024 Kevin Kofler, 2024-2025 DAGOPT Optimization Technol ogies GmbH

Package

com.dagopt.bbowda

Page 2 of 22

com.dagopt.bbowda.Bbowda

com.dagopt.bbowda
Class Bbowda

j ava. |l ang. Obj ect

+- com dagopt . bbowda. Bbowda

public class Bbowda
extends java.lang.Object

Constructor Summary

public Bbowda()

Method Summary

static void | srand(long seed)

Set the pseudorandom number generator (PRNG) seed of the C library. BBOWDA uses the
C library to generate pseudorandom numbers.

Methodsinherited from classj ava. | ang. Qbj ect

clone, equals, finalize, getd ass, hashCode, notify, notifyAl, toString, wait, wait,
wai t

Constructors

Bbowda
publ i ¢ Bbowda()

M ethods

srand
public static void srand(long seed)
Set the pseudorandom number generator (PRNG) seed of the C library.

BBOWDA usesthe C library to generate pseudorandom numbers. Therefore, if
reproducible results are needed, it is necessary to set this seed.

Parameters:
seed - The random seed to set.

Page 3 of 22

com.dagopt.bbowda.BbowdalN|

com.dagopt.bbowda

Class BbowdaJNI

j ava. |l ang. Obj ect

+- com dagopt . bbowda. BbowdaJNI

public class BbowdaJNI
extends java.lang.Object

Constructor Summary

public

BbowdaJNI ()

Method Summary

static native void

del ete_Optim zationProbl enm(l ong jargl)

static native void

del et e_Sol ver Par anmet er s(1 ong j argl)

static native |ong

new Optim zationProblen(int jargl, int jarg2, int jarg3, int jarg4,
doubl e[jargb, double[] jarg6, double[] jarg7, double[] jarg§,
doubl e[] jarg9, double[] jargl0)

static native |ong

new _Sol ver Paraneters(long jargl, double jarg2, boolean jarg3, double
] arg4)

static native
doubl e[]

Optim zationProblemc_get (long jargl, Optim zationProblemjargl)

static native void

Opt i m zati onProbl em change_owner shi p(OQpti m zati onProbl em obj, |ong
cpir, boolean take_or_rel ease)

static native int

Optim zationProblemdimx_get (long jargl, Optinizati onProblemjargl)

static native int

Optim zationProblemdinmy_get(long jargl, OptinizationProblemjargl))

static native int

Opti m zati onProbl em di nyEq_get (1 ong jargl, Optinizati onProblemjargl_)

static native void

Opti m zati onProbl em di rector_connect (Opti m zati onProbl em obj, |ong
cpir, boolean mem own, bool ean weak_global)

static native void

Opti m zationProbl em eval uateF(l ong jargl, OptinizationProblemjargl_,
double[] JargZ, double[] Jarg3)

static native
doubl e[]

Optim zati onProbl em fl ow get (1l ong jargl, Optim zationProblemjargl)

static native
doubl e[]

Opti m zationProbl em fup_get(long jargl, Optim zationProblemjargl)

Page 4 of 22

com.dagopt.bbowda.BbowdalN|

static native
doubl e[]

Opti m zationProbl em.initptsvec_get(long jargl, Optim zationProblem
Jargl)

static native int

Opti m zati onProbl em numi nitpts_get(long jargl, Optini zationProblem
Jargl)

static native void

Opti m zationProbl em sol ve(long jargl, Optimn zationProblemjargl_,
jargZ, Sol ver Paraneters jarg2_)

| ong

static native
doubl e[]

Opti m zati onProbl em x| ow _get (1 ong jargl, Optini zationProblemjargl)

static native
doubl e[]

Opti m zationProbl em xup_get (1 ong jargl, Optim zationProblemjargl)

static native double

Sol ver Par anet ers_esti mat eConstrai nt Tol _get (1 ong jargl, Sol verParaneters
Jargl)

static native void

Sol ver Par anet er s_esti mat eConstrai nt Tol _set (1 ong jargl, Sol verParaneters
jargl_, double jargZ)

static native bool ean

Sol ver Par anmet er s_gl obal Sear chl gnor eseqConstraints_get (long jargl,
SolverParaneters jargl)

static native void

Sol ver Par anet er s_gl obal Sear chl gnor eseqConstrai nts_set (long jargl,
SolverParaneters jargl_, boolean Jarg2)

static native |ong

Sol ver Par anmet ers_maxpts_get (1l ong jargl, SolverParaneters jargl_)

static native void

Sol ver Par anet er s_maxpts_set (1 ong jargl, SolverParaneters jargl_,
Jarg?)

| ong

static native double

Sol ver Par anmet er s_opti munTol _get (1 ong jargl, SolverParaneters jargl)

static native void

Sol ver Par anmet er s_opt i munTol _set (1 ong jargl, Sol verParaneters jargl_,
doubl'e jargzZ)

static native void

srand(l ong jargl)

static void

Swi gDi rector_Optim zati onProbl em eval uat eF(Opti mi zati onProbl em jsel f,
doubl €[] X, double[] F)

Methodsinherited from classj ava. | ang. Qbj ect

clone, equals, finalize, getC ass, hashCode, notify, notifyAl, toString, wait, wait,
wai t

Constructors

BbowdaJNI

publ i c BbowdaJNI ()

Page 5 of 22

com.dagopt.bbowda.BbowdalN|

M ethods

new_Solver Parameters

public final static native |long new Sol ver Paraneters(long jargl
doubl e jarg2,
bool ean j arg3,
doubl e jarg4)

Solver Parameters maxpts_set

public final static native void Sol verParanmeters_maxpts_set(long jargl
Sol ver Par aneters jargl_,
ong Jarg2)

Solver Parameters maxpts get

public final static native |long Sol verParaneters naxpts _get(long jargl
Sol ver Paraneters jargl_)

Solver Parameters optimumTol_set

public final static native void Sol verParaneters_optimunifol set(long jargl
Sol ver Paranmeters jargl_,
doubl e jarg2)

Solver Parameters optimumTol _get

public final static native double Sol verParaneters_opti munilol _get(long jargl
Sol ver Paraneters jargl)

Solver Parameters_global Sear chl gnoresEqConstraints set

public final static native void

Sol ver Par anet er s_gl obal Sear chl gnor esEqConstrai nts_set(long jargl
Sol ver Paraneters jargl_,
bool ean jargZ)

Solver Parameters_global Sear chl gnoresEqConstraints _get

public final static native bool ean
Sol ver Par anet er s_gl obal Sear chl gnor esEqConstrai nts_get (|l ong jargl
Sol ver Paraneters jargl_)

Page 6 of 22

com.dagopt.bbowda.BbowdalN|

(continued from last page)

Solver Parameters estimateConstraintTol _set

public final static native void Sol verParaneters_esti mat eConstrai nt Tol _set(long jargl,
Sol ver Paraneters jargl_,
doubl e jarg2)

Solver Parameters estimateConstraintTol _get

public final static native double Sol verParaneters_esti mat eConstrai nt Tol _get (| ong
jargl,
Sol ver Paraneters jargl_)

delete_Solver Parameters

public final static native void del ete_Sol ver Paraneters(long jargl)

new_OptimizationProblem

public final static native |long new Optim zationProblen(int jargl,

int jarg2,

int jarg3,

int jarg4,

doubl e[] jarg5,

doubl e[] | arg6,

doubl e[] jarg7,

doubl e[] jarg8,

doubl e[] jarg9,

doubl e[] | argl0)

delete_ OptimizationProblem

public final static native void delete_Optim zationProbl en(long jargl)

OptimizationProblem_solve

public final static native void OptinizationProblemsolve(long jargl,
Optinmzati onProblemjargl_,
'ong jargZ,
Sol ver Par aneters jarg2_)

OptimizationProblem_dimx_get

public final static native int Optim zationProbl emdi nk_get(long jargl,
Optim zati onProblemjargl)

Page 7 of 22

com.dagopt.bbowda.BbowdalN|

(continued from last page)

OptimizationProblem_dimy_get

public final static native int Optim zationProblemdiny get(long jargl,
Opti mi zati onProblemjargl)

OptimizationProblem_dimyEq_get

public final static native int Optim zationProbl emdi nyEqg_get(long jargl,
Optinizati onProblemjargl)

OptimizationProblem_numinitpts get

public final static native int Optim zationProblemnuninitpts_get(long jargl,
Optim zati onProblemjargl)

OptimizationProblem_c_get

public final static native double[] OptimzationProblemc_get(long jargl,
Optinizati onProblemjargl)

OptimizationProblem_xlow_get

public final static native double[] Optim zationProblem xl ow get(long jargl,
Optinizati onProblemjargl)

OptimizationProblem_xup_get

public final static native double[] Optim zationProblem xup_get(long jargl,
Optim zati onProblemjargl)

OptimizationProblem_flow_get

public final static native double[] Optim zationProblemflow get(long jargl,
Opti mi zati onProblemjargl.)

OptimizationProblem_fup_get

public final static native double[] OptinizationProblemfup_get(long jargl,
Optinizati onProblem jargl)

Page 8 of 22

com.dagopt.bbowda.BbowdalN|

(continued from last page)

OptimizationProblem_initptsvec get

public final static native double[] Optim zationProblem.initptsvec _get(long jargl

Opti mi zati onProblemjargl.)

OptimizationProblem_evaluateF

public final static native void Optim zationProbl em eval uateF(long jargl

Optini zati onProblemjargl_,
doubl e[jargZ,
doubl e[] jarg3)

OptimizationProblem_director _connect

public final static native void

Opti i zati onProbl em di rector_connect (Opti m zati onProbl em obj,
| ong cptr,
bool ean mem own,
bool ean weak_gl obal)

OptimizationProblem_change ownership

public final static native void

Opti mi zati onProbl em change_owner shi p(Opti m zati onProbl em obj,
| ong cptr,
bool ean take or _rel ease)

srand

public final static native void srand(long jargl)

SwigDirector _OptimizationProblem_evaluateF

public static void SwigDirector_OptinizationProbl em eval uateF(Opti m zati onProbl em

j sel f,

Page 9 of 22

com.dagopt.bbowda.OptimizationProblem

com.dagopt.bbowda
Class OptimizationProblem

j ava. |l ang. Obj ect

+- com dagopt . bbowda. Opti m zat i onPr obl em

public class OptimizationProblem
extends java.lang.Object

Definition of ablack box optimization problem.

This class represents both the constants (inherited from
bbowda_problem) and the black box function (in the form of the pure
virtual method evaluateF) that together represent the black box
optimization problem. Subclass this class to implement your optimization
problem.

The problem is assumed to be of the form:

min cT (X ; y) st.y = F1(X) [explicit equality constraints] F2(x) = 0 [implicit equality constraints] xlow <= x <= xup Flow <=y <=
Fup

Field Summary

protected transient swi gCMvenOwn

Constructor Summary

protected | Optim zationProbl en(long cPtr, bool ean cMenoryOan)

public | OptimzationProblem(int dinmx, int dimy, int dimy_eq, int numnitpts,
doublre[] c, double[] xlow, double[] xup, double[] Flow double[] Fup,
doubl e[] initpts)

Main constructor.

public | OptimzationProblem(int dinmx, int dimy, int dinmy_eq, int numnitpts,
doublre[] c, double[] xlow, double[] xup, double[] Flow double[] Fup,
doubl e[][] initpts)

Convenience constructor. This constructor overload is syntactic sugar allowing to pass a 2-
dimensional array asinitpts.

Method Summary

void | delete()

voi d | eval uateF(doubl e[] x, double[] F)

Pure virtual callback evaluating the black box function. Callback evaluating the black box
function (or obtaining the evaluation result from an external source) at the point x (of
dimension dimx) and writing the result to F (of dimension dimy + dimy_eq).

void | finalize()

doubl e[] get ()
Coefficientsin the (linear) objective function. The coefficient vector c.

Page 10 of 22

com.dagopt.bbowda.OptimizationProblem

static |ong

get CPtr (Optim zati onProbl em obj)

i nt

get Di nx()
Number of input variables. The vector dimension of x.

get Di ny()
Number of explicit equality constraints. The vector dimension of y = F1(X).

i nt

get D nyEq()
Number of implicit equality constraints. Vector dimension of F2(x).

doubl e[]

get Fl ow()
Lower bounds for explicit equality constraints. Lower bounds for y = F1(x).

doubl e[]

get Fup()
Upper bounds for explicit equality constraints. Upper bounds for y = F1(X).

doubl e[][]

getlnitpts()

User-provided starting points, as a 2-dimensional jagged array. A jagged matrix of
dimension numinitpts * dimx (in row-major order, i.e., first all components of the first
starting point, then the second one, etc.).

doubl e[]

getlnitptsvec()

User-provided starting points, as a contiguous array. Must be a contiguous matrix of
dimension numinitpts * dimx (in row-major order, i.e., first all components of the first
starting point, then the second one, €etc.).

get Numi ni t pt s()
Number of user-specified starting points. Can beO.

doubl e[]

get Xl owm()
Lower bounds for input variables. Lower bounds for x.

doubl e[]

get Xup()
Upper bounds for input variables. Upper bounds for x.

voi d

sol ve(Sol ver Par anet ers par ans)

Main entry point of the BBOWDA object-oriented API. Runsthe BBOWDA algorithm on

this problem with the given parameters.

voi d

swi gDi rect or Di sconnect ()

void

swi gRel easeOwner shi p()

voi d

swi gTakeOaner shi p()

Methodsinherited from classj ava. | ang. Qbj ect

cl one,
wai t

equal s,

finalize,

get C ass, hashCode, notify, notifyAll, toString, wait,

Fields

Page 11 of 22

wai t,

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

swigCMemOwn
protected transient bool ean swi gCvenOm

Constructors

OptimizationProblem
protected Optim zati onProbl en{long chtr,

bool ean cMenor yOan)

OptimizationProblem
public OptinizationProblen(int dinx,

int diny,

i nt diny_eq,

int numnitpts,
doubl e[] c,

doubl e[] xI ow,
doubl e[] xup,
doubl e[] FI ow,
doubl e[] Fup,
doubl e[] initpts)

Main constructor.

Parameters:

di mx - Number of input variables. See dimx.

di my - Number of explicit equality constraints. See dimy.

di my_eq - Number of implicit equality constraints. See
dimy eq.

numni ni t pt s - Number of user-specified starting points. See
numinitpts.

¢ - Coefficientsin the (linear) objective function. See c.
x| ow- Lower bounds for input variables. See xlow.
xup - Upper bounds for input variables. See xup.

Fl ow- Lower bounds for explicit equality constraints. See
Flow.

Fup - Upper bounds for explicit equality constraints. See
Fup.

i ni tpts - User-provided starting points. See initpts.

Page 12 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

OptimizationProblem

public Optin zationProblen(int dinx,
int diny,
i nt diny_eq,
int numnitpts,
doubl e[] c,
doubl e[] xI ow,
doubl e[] xup,
doubl e[] FI ow,
doubl e[] Fup,
doubl e[][] 1 nitpts)

Convenience constructor.

This constructor overload is syntactic sugar allowing to pass a
2-dimensional array asinitpts.

Parameters:
di mx - Number of input variables. See dimx.

di my - Number of explicit equality constraints. See dimy.

di my_eq - Number of implicit equality constraints. See
dimy eq.

numni ni t pt s - Number of user-specified starting points. See
numinitpts.

¢ - Coefficientsin the (linear) objective function. See c.
x| ow- Lower bounds for input variables. See xlow.
xup - Upper bounds for input variables. See xup.

Fl ow- Lower bounds for explicit equality constraints. See
Flow.

Fup - Upper bounds for explicit equality constraints. See
Fup.

i ni tpts - User-provided starting points. See initpts.

M ethods

getCPtr

protected static |long getCPtr(Optim zati onProbl em obj)

finalize

protected void finalize()

Page 13 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)
delete

public void delete()

swigDir ector Disconnect

protected void sw gDirectorDi sconnect ()

swigReleaseOwner ship

public void sw gRel easeOaner shi p()

swigTakeOwner ship

public void sw gTakeOaner shi p()

solve

public void sol ve(Sol ver Par anet ers par ans)

Main entry point of the BBOWDA abject-oriented API.

Runs the BBOWDA algorithm on this problem with the given parameters.

Parameters:

par ans - The solver parameters for the BBOWDA algorithm.

getDimx

public int getDi nmx()

Number of input variables.

The vector dimension of x.

getDimy

public int getDimy()
Number of explicit equality constraints.

The vector dimension of y = F1(x). Also known as the number of
interval inequality constraintsif the coefficientsof yinc
areO. B

getDimyEq

public int getDi nyEq()

Page 14 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)
Number of implicit equality constraints.

Vector dimension of F2(x).

getNuminitpts

public int getNumnitpts()
Number of user-specified starting points.

Can be 0. If no or not enough starting points are provided by the user,
BBOWDA will automatically sample some starting points within the
bounds.

getC

public double[] get ()

Coefficientsin the (linear) objective function.

The coefficient vector c. Must have dimension dimx + dimy.
First list al coefficients of x in order, then all coefficients of
y = F1(X) in order.

getXlow

public double[] getXl ow()

Lower bounds for input variables.

Lower bounds for x. Must have dimension dimx.

getXup

public double[] getXup()

Upper bounds for input variables.

Upper bounds for x. Must have dimension dimx.

getFlow

public double[] getFlow)

Lower bounds for explicit equality constraints.
Lower bounds for y = F1(x). Must have dimension dimy.

Note: No bounds need to be specified for the implicit equality
constraints F2(x) because those bounds are by definition always 0.

getFup

public double[] getFup()

Upper bounds for explicit equality constraints.
Upper bounds for y = F1(x). Must have dimension dimy.

Note: No bounds need to be specified for the implicit equality
constraints F2(x) because those bounds are by definition always 0

Page 15 of 22

com.dagopt.bbowda.OptimizationProblem

getl nitptsvec

public doubl e[] getlnitptsvec()

User-provided starting points, as a contiguous array.

Must be a contiguous matrix of dimension numinitpts * dimx
(inrow-major order, i.e., first all components of theTirst starting
point, then the second one, etc.). If numinitptsisO, thisis

just an empty vector (and can be NOCL).

evaluateF

protected voi d eval uat eF(doubl e[] x,
doubl e[] F)

Pure virtual callback evaluating the black box function.

Callback evaluating the black box function (or obtaining the evaluation
result from an external source) at the point x (of dimension

dimx) and writing the result to F (of dimension dimy +

dimy_eq). Must be implemented by the user through subclassing.

Note: Thereisno user_data pointer because any user data can and
should be included in the user-provided subclass.

getl nitpts
public double[][] getlnitpts()

User-provided starting points, as a 2-dimensional jagged array.

A jagged matrix of dimension numinitpts* dimx
(inrow-major order, i.e., first &T components of the first starting
point, then the second one, etc.). If numinitptsis 0, thisarray is empty.

Page 16 of 22

com.dagopt.bbowda.SolverParameters

com.dagopt.bbowda
Class Solver Parameters

j ava. |l ang. Obj ect

+- com dagopt . bbowda. Sol ver Par anet er s

public class Solver Parameters
extends java.lang.Object

Solver parameters for the BBOWDA algorithm.

Parameters allowing to tune how the BBOWDA algorithm operates.

Field Summary

protected transient swi gCvenOwn

Constructor Summary

prot ect ed ‘ Sol ver Par anet ers(l ong cPtr, bool ean cMenoryQOan)

public | Sol ver Paraneters(l ong maxpts, double optinumtol, bool ean
gl obal _search_i gnores_eq_constraints, double estimte_constraint_tol)

Constructor.

Method Summary

void | delete()

void | finalize()

static long | getCPtr(Sol ver Paraneters obj)

doubl e | getEsti mat eConstrai nt Tol ()

Tolerance for the constraints estimating the implicit equality constraints during global
search. If global_search_ignores eq constraintsis false, the global search attemptsto
estimate global enclosures for the iImplicit equality constraints.

bool ean | get d obal Sear chl gnor esEqConstrai nts()

Whether to ignore implicit equality constraints for global search. True means that implicit
equality constraints will be ignored by the global search.

long | get Maxpts()

Maximum number of pointsto evaluate. Currently, the algorithm will always run until
exactly this many points are evaluated, because no other stopping criteria are implemented
yet. In the presence of implicit equality constraints, it may then evaluate one more point for
the final extrapolation attempt.

Page 17 of 22

com.dagopt.bbowda.SolverParameters

doubl e

get Opt i munirol ()

Tolerance for optimum feasibility (infinity norm). A point will be considered feasible, and
thus avalid candidate for the optimum, if the bound constraints for x are satisfied exactly,
and if none of the other constraintsis violated by more than optimum tol, i.e., if the
componentwise inequalities Flow - optimum_tol <= F1(x) <= Fup + optimum_tol and -
optimum _tol < F2(x) < optimum _tol hold.

voi d

set Esti mat eConstrai nt Tol (doubl e val ue)

Tolerance for the constraints estimating the implicit equality constraints during global
search. If global_search_ignores eq constraintsis false, the global search attemptsto
estimate global enclosures for the Implicit equality constraints.

voi d

set A obal Sear chl gnor esEqConstrai nt s(bool ean val ue)

Whether to ignore implicit equality constraints for global search. True means that implicit
equality constraints will be ignored by the global search.

void

set Maxpt s(1 ong val ue)

Maximum number of pointsto evaluate. Currently, the algorithm will always run until
exactly this many points are evaluated, because no other stopping criteria are implemented
yet. In the presence of implicit equality constraints, it may then evaluate one more point for
the final extrapolation attempt.

void

set Opti muniol (doubl e val ue)

Tolerance for optimum feasibility (infinity norm). A point will be considered feasible, and
thus avalid candidate for the optimum, if the bound constraints for x are satisfied exactly,
and if none of the other constraintsis violated by more than optimum tol, i.e., if the
componentwise inequalities Flow - optimum_tol <= F1(x) <= Fup + optimum_tol and -
optimum _tol < F2(x) < optimum _tol hold.

Methodsinherited from classj ava. | ang. Qbj ect

wai t

clone, equals, finalize, getC ass, hashCode, notify, notifyAl, toString, wait, wait,

Fields

swigCM emOwn

protected transient bool ean sw gCvenOmn

Constructors

Solver Parameters

protected Sol ver Parameters(long cPtr,

bool ean cMenor yOan)

Solver Parameters

public Sol ver Par anet er s(1 ong maxpt s,

doubl e optimumtol,
bool ean gl obal search_ignores_eq constraints,
doubl e estimate_constraint_tol)

Page 18 of 22

com.dagopt.bbowda.SolverParameters

(continued from last page)
Constructor.

Parameters:

maxpt s - Maximum number of pointsto evaluate. See maxpts.

opti mum t ol - Tolerance for optimum feasibility (infinity norm).
See optimum_tol.

gl obal _search_i gnores_eq_constr ai nt s - Whether to ignore implicit
equality constraints for global search. See

global_search ignores eq constraints.

esti mat e_constrai nt_tol - Tolerance for the constraints estimating
the implicit equality constraints during
global search. See

estimate_constraint_tol.

M ethods

getCPtr

protected static |ong getCPtr(Sol ver Paraneters obj)

finalize

protected void finalize()

delete
public void delete()

setM axpts
public void set Maxpts(long val ue)
Maximum number of pointsto evaluate.

Currently, the algorithm will always run until exactly this many points
are evaluated, because no other stopping criteria are implemented yet.

In the presence of implicit equality constraints, it may then evaluate
one more point for the final extrapolation attempt.

getM axpts

public | ong get Maxpts()
Maximum number of pointsto evaluate.

Currently, the algorithm will always run until exactly this many points
are evaluated, because no other stopping criteria are implemented yet.

In the presence of implicit equality constraints, it may then evaluate
one more point for the final extrapolation attempt.

Page 19 of 22

com.dagopt.bbowda.SolverParameters

(continued from last page)

setOptimumTol

public void set Opti nmunirol (doubl e val ue)

Tolerance for optimum feasibility (infinity norm).

A point will be considered feasible, and thus a valid candidate for the
optimum, if the bound constraints for x are satisfied exactly, and

if none of the other constraintsis violated by more than

optimum tol, i.e., if the componentwise inequalities Flow -
optimum_tol <= F1(x) <= Fup + optimum _tol and -

optimum _tol < F2(x) < optimum_tol hold. In vector terms, this
means that the infinity norm of the constraint violation must be less
than optimum_tol.

getOptimumTol
publ i c doubl e get Opti muniol ()

Tolerance for optimum feasibility (infinity norm).

A point will be considered feasible, and thus avalid candidate for the
optimum, if the bound constraints for x are satisfied exactly, and

if none of the other constraintsis violated by more than

optimum _tol, i.e., if the componentwise inequalities Flow -

optimum _tol <= F1(x) <= Fup + optimum tol and -

optimum _tol < F2(x) < optimum_tol hold. In vector terms, this
means that the infinity norm of the constraint violation must be less
than optimum _tol.

setGlobal Sear chlgnoresEgConstraints

public void setd obal Sear chl gnor eseqConstr ai nt s(bool ean val ue)

Whether to ignore implicit equality constraints for global
search.

True means that implicit equality constraints will be ignored by the
global search. Hence, it will suggest evaluation points to fill any

gaps in the search space even if they are nowhere near feasible for the
implicit equality constraints.

False means that implicit equality constraints will be honored by the
global search. The global search will compute estimates that attempt to
globally enclose the implicit equality constraints with the help of an
external LP solver, helping to suggest only points that are expected to
be approximately feasible.

This parameter has no effect if the problem does not include any
implicit equality constraints.

getGlobal Sear chlgnoresEqConstraints

publi ¢ bool ean get d obal Sear chl gnor eseEqConstr ai nt s()

Page 20 of 22

Index

(continued from last page)

Whether to ignore implicit equality constraints for global
search.

True means that implicit equality constraints will be ignored by the
global search. Hence, it will suggest evaluation points to fill any

gaps in the search space even if they are nowhere near feasible for the
implicit equality constraints.

False means that implicit equality constraints will be honored by the
global search. The global search will compute estimates that attempt to
globally enclose the implicit equality constraints with the help of an
external LP solver, helping to suggest only points that are expected to
be approximately feasible.

This parameter has no effect if the problem does not include any
implicit equality constraints.

setEstimateConstraintTol

public void setEstinmateConstraint Tol (doubl e val ue)

Tolerance for the constraints estimating the implicit equality
constraints during global search.

If global_search_ignores eq constraintsisfalse, the global

search aitempis to estiimate giobal enclosures for the implicit equality
constraints. But those enclosures are estimated approximations and not
guaranteed to hold exactly. This tolerance specifies by how much the
bounds for the estimated enclosures should be relaxed to account for
that.

This parameter has no effect if the problem does not include any
implicit equality constraints or if
global_search_ignores_eq _constraintsistrue.

getEstimateConstraintTol
publ i c doubl e getEsti mat eConstrai nt Tol ()

Tolerance for the constraints estimating the implicit equality
constraints during global search.

If global_search_ignores_eq constraintsis false, the global

search aitempts to estiimate giobal enclosures for the implicit equality
constraints. But those enclosures are estimated approximations and not
guaranteed to hold exactly. This tolerance specifies by how much the
bounds for the estimated enclosures should be relaxed to account for
that.

This parameter has no effect if the problem does not include any
implicit equality constraints or if
global_search_ignores_eq_constraintsistrue.

Page 21 of 22

Index

| ndex
B

O

OptimizationProblem 12
OptimizationProblem_c_get 8

Bbowda 3 OptimizationProblem_change_ownership 9

BbowdalNI 5 OptimizationProblem_dimx_get 7
OptimizationProblem_dimy_get 7

D OptimizationProblem_dimyEq_get 8
OptimizationProblem_director_connect 9

delete 13,19 OptimizationProblem_evaluateF 9

delete_OptimizationProblem 7
delete_SolverParameters 7

OptimizationProblem_flow_get 8
OptimizationProblem_fup_get 8
OptimizationProblem_initptsvec_get 8

E OptimizationProblem_numinitpts get 8
OptimizationProblem_solve 7
evaluateF 16 OptimizationProblem_xlow_get 8
OptimizationProblem_xup_get 8
F
S
finalize 13, 19
setEstimateConstraintTol 21
G setGlobal SearchlgnoresEqConstraints 20
setMaxpts 19
getC 15 setOptimumTol 19
getCPtr 13, 19 solve 14
getDimx 14 SolverParameters 18
getDimy 14 SolverParameters_estimateConstraintTol_get 7
getDimyEq 14 SolverParameters_estimateConstraintTol_set 6
getEstimateConstraintTol 21 SolverParameters_global SearchlgnoresEqConstraints_get 6
getFlow 15 SolverParameters_global SearchlgnoresEqConstraints_set 6
getFup 15 SolverParameters maxpts_get 6
getGlobal SearchlgnoresEqConstraints 20 SolverParameters maxpts_set 6
getlnitpts 16 SolverParameters optimumTol_get 6

getlnitptsvec 16
getMaxpts 19 srand 3,9

swigCMemOwn 11, 18
SwigDirector_OptimizationProblem_evaluateF 9

SolverParameters_optimumTol_set 6

getNuminitpts 15
getOptimumTol 20

getXlow 15 swigDirectorDisconnect 14

getXup 15 swigReleaseOwnership 14
swigTakeOwnership 14

N

new_OptimizationProblem 7

new_SolverParameters 5

Page 22 of 22

	All Classes
	Bbowda
	Constructors
	Bbowda()

	Methods
	srand(long)

	BbowdaJNI
	Constructors
	BbowdaJNI()

	Methods
	OptimizationProblem_c_get(long, OptimizationProblem)
	OptimizationProblem_change_ownership(OptimizationProblem, long, boolean)
	OptimizationProblem_dimx_get(long, OptimizationProblem)
	OptimizationProblem_dimyEq_get(long, OptimizationProblem)
	OptimizationProblem_dimy_get(long, OptimizationProblem)
	OptimizationProblem_director_connect(OptimizationProblem, long, boolean, boolean)
	OptimizationProblem_evaluateF(long, OptimizationProblem, double[], double[])
	OptimizationProblem_flow_get(long, OptimizationProblem)
	OptimizationProblem_fup_get(long, OptimizationProblem)
	OptimizationProblem_initptsvec_get(long, OptimizationProblem)
	OptimizationProblem_numinitpts_get(long, OptimizationProblem)
	OptimizationProblem_solve(long, OptimizationProblem, long, SolverParameters)
	OptimizationProblem_xlow_get(long, OptimizationProblem)
	OptimizationProblem_xup_get(long, OptimizationProblem)
	SolverParameters_estimateConstraintTol_get(long, SolverParameters)
	SolverParameters_estimateConstraintTol_set(long, SolverParameters, double)
	SolverParameters_globalSearchIgnoresEqConstraints_get(long, SolverParameters)
	SolverParameters_globalSearchIgnoresEqConstraints_set(long, SolverParameters, boolean)
	SolverParameters_maxpts_get(long, SolverParameters)
	SolverParameters_maxpts_set(long, SolverParameters, long)
	SolverParameters_optimumTol_get(long, SolverParameters)
	SolverParameters_optimumTol_set(long, SolverParameters, double)
	SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem, double[], double[])
	delete_OptimizationProblem(long)
	delete_SolverParameters(long)
	new_OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[])
	new_SolverParameters(long, double, boolean, double)
	srand(long)

	OptimizationProblem
	Fields
	swigCMemOwn

	Constructors
	OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[][])

	Methods
	delete()
	evaluateF(double[], double[])
	finalize()
	getC()
	getCPtr(OptimizationProblem)
	getDimx()
	getDimy()
	getDimyEq()
	getFlow()
	getFup()
	getInitpts()
	getInitptsvec()
	getNuminitpts()
	getXlow()
	getXup()
	solve(SolverParameters)
	swigDirectorDisconnect()
	swigReleaseOwnership()
	swigTakeOwnership()

	SolverParameters
	Fields
	swigCMemOwn

	Constructors
	SolverParameters(long, double, boolean, double)

	Methods
	delete()
	finalize()
	getCPtr(SolverParameters)
	getEstimateConstraintTol()
	getGlobalSearchIgnoresEqConstraints()
	getMaxpts()
	getOptimumTol()
	setEstimateConstraintTol(double)
	setGlobalSearchIgnoresEqConstraints(boolean)
	setMaxpts(long)
	setOptimumTol(double)

	Packages
	com.dagopt.bbowda
	Bbowda
	Constructors
	Bbowda()

	Methods
	srand(long)

	BbowdaJNI
	Constructors
	BbowdaJNI()

	Methods
	OptimizationProblem_c_get(long, OptimizationProblem)
	OptimizationProblem_change_ownership(OptimizationProblem, long, boolean)
	OptimizationProblem_dimx_get(long, OptimizationProblem)
	OptimizationProblem_dimyEq_get(long, OptimizationProblem)
	OptimizationProblem_dimy_get(long, OptimizationProblem)
	OptimizationProblem_director_connect(OptimizationProblem, long, boolean, boolean)
	OptimizationProblem_evaluateF(long, OptimizationProblem, double[], double[])
	OptimizationProblem_flow_get(long, OptimizationProblem)
	OptimizationProblem_fup_get(long, OptimizationProblem)
	OptimizationProblem_initptsvec_get(long, OptimizationProblem)
	OptimizationProblem_numinitpts_get(long, OptimizationProblem)
	OptimizationProblem_solve(long, OptimizationProblem, long, SolverParameters)
	OptimizationProblem_xlow_get(long, OptimizationProblem)
	OptimizationProblem_xup_get(long, OptimizationProblem)
	SolverParameters_estimateConstraintTol_get(long, SolverParameters)
	SolverParameters_estimateConstraintTol_set(long, SolverParameters, double)
	SolverParameters_globalSearchIgnoresEqConstraints_get(long, SolverParameters)
	SolverParameters_globalSearchIgnoresEqConstraints_set(long, SolverParameters, boolean)
	SolverParameters_maxpts_get(long, SolverParameters)
	SolverParameters_maxpts_set(long, SolverParameters, long)
	SolverParameters_optimumTol_get(long, SolverParameters)
	SolverParameters_optimumTol_set(long, SolverParameters, double)
	SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem, double[], double[])
	delete_OptimizationProblem(long)
	delete_SolverParameters(long)
	new_OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[])
	new_SolverParameters(long, double, boolean, double)
	srand(long)

	OptimizationProblem
	Fields
	swigCMemOwn

	Constructors
	OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[][])

	Methods
	delete()
	evaluateF(double[], double[])
	finalize()
	getC()
	getCPtr(OptimizationProblem)
	getDimx()
	getDimy()
	getDimyEq()
	getFlow()
	getFup()
	getInitpts()
	getInitptsvec()
	getNuminitpts()
	getXlow()
	getXup()
	solve(SolverParameters)
	swigDirectorDisconnect()
	swigReleaseOwnership()
	swigTakeOwnership()

	SolverParameters
	Fields
	swigCMemOwn

	Constructors
	SolverParameters(long, double, boolean, double)

	Methods
	delete()
	finalize()
	getCPtr(SolverParameters)
	getEstimateConstraintTol()
	getGlobalSearchIgnoresEqConstraints()
	getMaxpts()
	getOptimumTol()
	setEstimateConstraintTol(double)
	setGlobalSearchIgnoresEqConstraints(boolean)
	setMaxpts(long)
	setOptimumTol(double)

	Index

