
BBOWDA Java API

Kevin Kofler <kofler@dagopt.com>
Copyright (C) 2006-2024 Kevin Kofler, 2024-2025 DAGOPT Optimization Technologies GmbH

Package

com.dagopt.bbowda

Page 2 of 22

com.dagopt.bbowda
Class Bbowda

java.lang.Object
 |
 +-com.dagopt.bbowda.Bbowda

public class Bbowda
extends java.lang.Object

Constructor Summary
public Bbowda()

Method Summary
static void srand(long seed)

Set the pseudorandom number generator (PRNG) seed of the C library. BBOWDA uses the
C library to generate pseudorandom numbers.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

Bbowda
public Bbowda()

Methods

srand
public static void srand(long seed)

Set the pseudorandom number generator (PRNG) seed of the C library.

 BBOWDA uses the C library to generate pseudorandom numbers. Therefore, if
 reproducible results are needed, it is necessary to set this seed.

Parameters:
seed - The random seed to set.

Page 3 of 22

com.dagopt.bbowda.Bbowda

com.dagopt.bbowda
Class BbowdaJNI

java.lang.Object
 |
 +-com.dagopt.bbowda.BbowdaJNI

public class BbowdaJNI
extends java.lang.Object

Constructor Summary
public BbowdaJNI()

Method Summary
static native void delete_OptimizationProblem(long jarg1)

static native void delete_SolverParameters(long jarg1)

static native long new_OptimizationProblem(int jarg1, int jarg2, int jarg3, int jarg4,
double[] jarg5, double[] jarg6, double[] jarg7, double[] jarg8,
double[] jarg9, double[] jarg10)

static native long new_SolverParameters(long jarg1, double jarg2, boolean jarg3, double
jarg4)

static native
double[]

OptimizationProblem_c_get(long jarg1, OptimizationProblem jarg1_)

static native void OptimizationProblem_change_ownership(OptimizationProblem obj, long
cptr, boolean take_or_release)

static native int OptimizationProblem_dimx_get(long jarg1, OptimizationProblem jarg1_)

static native int OptimizationProblem_dimy_get(long jarg1, OptimizationProblem jarg1_)

static native int OptimizationProblem_dimyEq_get(long jarg1, OptimizationProblem jarg1_)

static native void OptimizationProblem_director_connect(OptimizationProblem obj, long
cptr, boolean mem_own, boolean weak_global)

static native void OptimizationProblem_evaluateF(long jarg1, OptimizationProblem jarg1_,
double[] jarg2, double[] jarg3)

static native
double[]

OptimizationProblem_flow_get(long jarg1, OptimizationProblem jarg1_)

static native
double[]

OptimizationProblem_fup_get(long jarg1, OptimizationProblem jarg1_)

Page 4 of 22

com.dagopt.bbowda.BbowdaJNI

static native
double[]

OptimizationProblem_initptsvec_get(long jarg1, OptimizationProblem
jarg1_)

static native int OptimizationProblem_numinitpts_get(long jarg1, OptimizationProblem
jarg1_)

static native void OptimizationProblem_solve(long jarg1, OptimizationProblem jarg1_, long
jarg2, SolverParameters jarg2_)

static native
double[]

OptimizationProblem_xlow_get(long jarg1, OptimizationProblem jarg1_)

static native
double[]

OptimizationProblem_xup_get(long jarg1, OptimizationProblem jarg1_)

static native double SolverParameters_estimateConstraintTol_get(long jarg1, SolverParameters
jarg1_)

static native void SolverParameters_estimateConstraintTol_set(long jarg1, SolverParameters
jarg1_, double jarg2)

static native boolean SolverParameters_globalSearchIgnoresEqConstraints_get(long jarg1,
SolverParameters jarg1_)

static native void SolverParameters_globalSearchIgnoresEqConstraints_set(long jarg1,
SolverParameters jarg1_, boolean jarg2)

static native long SolverParameters_maxpts_get(long jarg1, SolverParameters jarg1_)

static native void SolverParameters_maxpts_set(long jarg1, SolverParameters jarg1_, long
jarg2)

static native double SolverParameters_optimumTol_get(long jarg1, SolverParameters jarg1_)

static native void SolverParameters_optimumTol_set(long jarg1, SolverParameters jarg1_,
double jarg2)

static native void srand(long jarg1)

static void SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem jself,
double[] x, double[] F)

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Constructors

BbowdaJNI
public BbowdaJNI()

Page 5 of 22

com.dagopt.bbowda.BbowdaJNI

Methods

new_SolverParameters
public final static native long new_SolverParameters(long jarg1,
 double jarg2,
 boolean jarg3,
 double jarg4)

SolverParameters_maxpts_set
public final static native void SolverParameters_maxpts_set(long jarg1,
 SolverParameters jarg1_,
 long jarg2)

SolverParameters_maxpts_get
public final static native long SolverParameters_maxpts_get(long jarg1,
 SolverParameters jarg1_)

SolverParameters_optimumTol_set
public final static native void SolverParameters_optimumTol_set(long jarg1,
 SolverParameters jarg1_,
 double jarg2)

SolverParameters_optimumTol_get
public final static native double SolverParameters_optimumTol_get(long jarg1,
 SolverParameters jarg1_)

SolverParameters_globalSearchIgnoresEqConstraints_set
public final static native void
SolverParameters_globalSearchIgnoresEqConstraints_set(long jarg1,
 SolverParameters jarg1_,
 boolean jarg2)

SolverParameters_globalSearchIgnoresEqConstraints_get
public final static native boolean
SolverParameters_globalSearchIgnoresEqConstraints_get(long jarg1,
 SolverParameters jarg1_)

Page 6 of 22

com.dagopt.bbowda.BbowdaJNI

(continued from last page)

SolverParameters_estimateConstraintTol_set
public final static native void SolverParameters_estimateConstraintTol_set(long jarg1,
 SolverParameters jarg1_,
 double jarg2)

SolverParameters_estimateConstraintTol_get
public final static native double SolverParameters_estimateConstraintTol_get(long
jarg1,
 SolverParameters jarg1_)

delete_SolverParameters
public final static native void delete_SolverParameters(long jarg1)

new_OptimizationProblem
public final static native long new_OptimizationProblem(int jarg1,
 int jarg2,
 int jarg3,
 int jarg4,
 double[] jarg5,
 double[] jarg6,
 double[] jarg7,
 double[] jarg8,
 double[] jarg9,
 double[] jarg10)

delete_OptimizationProblem
public final static native void delete_OptimizationProblem(long jarg1)

OptimizationProblem_solve
public final static native void OptimizationProblem_solve(long jarg1,
 OptimizationProblem jarg1_,
 long jarg2,
 SolverParameters jarg2_)

OptimizationProblem_dimx_get
public final static native int OptimizationProblem_dimx_get(long jarg1,
 OptimizationProblem jarg1_)

Page 7 of 22

com.dagopt.bbowda.BbowdaJNI

(continued from last page)

OptimizationProblem_dimy_get
public final static native int OptimizationProblem_dimy_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_dimyEq_get
public final static native int OptimizationProblem_dimyEq_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_numinitpts_get
public final static native int OptimizationProblem_numinitpts_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_c_get
public final static native double[] OptimizationProblem_c_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_xlow_get
public final static native double[] OptimizationProblem_xlow_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_xup_get
public final static native double[] OptimizationProblem_xup_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_flow_get
public final static native double[] OptimizationProblem_flow_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_fup_get
public final static native double[] OptimizationProblem_fup_get(long jarg1,
 OptimizationProblem jarg1_)

Page 8 of 22

com.dagopt.bbowda.BbowdaJNI

(continued from last page)

OptimizationProblem_initptsvec_get
public final static native double[] OptimizationProblem_initptsvec_get(long jarg1,
 OptimizationProblem jarg1_)

OptimizationProblem_evaluateF
public final static native void OptimizationProblem_evaluateF(long jarg1,
 OptimizationProblem jarg1_,
 double[] jarg2,
 double[] jarg3)

OptimizationProblem_director_connect
public final static native void
OptimizationProblem_director_connect(OptimizationProblem obj,
 long cptr,
 boolean mem_own,
 boolean weak_global)

OptimizationProblem_change_ownership
public final static native void
OptimizationProblem_change_ownership(OptimizationProblem obj,
 long cptr,
 boolean take_or_release)

srand
public final static native void srand(long jarg1)

SwigDirector_OptimizationProblem_evaluateF
public static void SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem
jself,
 double[] x,
 double[] F)

Page 9 of 22

com.dagopt.bbowda.BbowdaJNI

com.dagopt.bbowda
Class OptimizationProblem

java.lang.Object
 |
 +-com.dagopt.bbowda.OptimizationProblem

public class OptimizationProblem
extends java.lang.Object

Definition of a black box optimization problem.

 This class represents both the constants (inherited from
 bbowda_problem) and the black box function (in the form of the pure
 virtual method evaluateF) that together represent the black box
 optimization problem. Subclass this class to implement your optimization
 problem.

 The problem is assumed to be of the form:
 min cT (x ; y) s.t. y = F1(x) [explicit equality constraints] F2(x) = 0 [implicit equality constraints] xlow <= x <= xup Flow <= y <=
Fup

Field Summary
protected transient swigCMemOwn

Constructor Summary
protected OptimizationProblem(long cPtr, boolean cMemoryOwn)

public OptimizationProblem(int dimx, int dimy, int dimy_eq, int numinitpts,
double[] c, double[] xlow, double[] xup, double[] Flow, double[] Fup,
double[] initpts)

Main constructor.

public OptimizationProblem(int dimx, int dimy, int dimy_eq, int numinitpts,
double[] c, double[] xlow, double[] xup, double[] Flow, double[] Fup,
double[][] initpts)

Convenience constructor. This constructor overload is syntactic sugar allowing to pass a 2-
dimensional array as initpts.

Method Summary
void delete()

void evaluateF(double[] x, double[] F)

Pure virtual callback evaluating the black box function. Callback evaluating the black box
function (or obtaining the evaluation result from an external source) at the point x (of
dimension dimx) and writing the result to F (of dimension dimy + dimy_eq).

void finalize()

double[] getC()

Coefficients in the (linear) objective function. The coefficient vector c.

Page 10 of 22

com.dagopt.bbowda.OptimizationProblem

static long getCPtr(OptimizationProblem obj)

int getDimx()

Number of input variables. The vector dimension of x.

int getDimy()

Number of explicit equality constraints. The vector dimension of y = F1(x).

int getDimyEq()

Number of implicit equality constraints. Vector dimension of F2(x).

double[] getFlow()

Lower bounds for explicit equality constraints. Lower bounds for y = F1(x).

double[] getFup()

Upper bounds for explicit equality constraints. Upper bounds for y = F1(x).

double[][] getInitpts()

User-provided starting points, as a 2-dimensional jagged array. A jagged matrix of
dimension numinitpts * dimx (in row-major order, i.e., first all components of the first
starting point, then the second one, etc.).

double[] getInitptsvec()

User-provided starting points, as a contiguous array. Must be a contiguous matrix of
dimension numinitpts * dimx (in row-major order, i.e., first all components of the first
starting point, then the second one, etc.).

int getNuminitpts()

Number of user-specified starting points. Can be 0.

double[] getXlow()

Lower bounds for input variables. Lower bounds for x.

double[] getXup()

Upper bounds for input variables. Upper bounds for x.

void solve(SolverParameters params)

Main entry point of the BBOWDA object-oriented API. Runs the BBOWDA algorithm on
this problem with the given parameters.

void swigDirectorDisconnect()

void swigReleaseOwnership()

void swigTakeOwnership()

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

Page 11 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

swigCMemOwn
protected transient boolean swigCMemOwn

Constructors

OptimizationProblem
protected OptimizationProblem(long cPtr,
 boolean cMemoryOwn)

OptimizationProblem
public OptimizationProblem(int dimx,
 int dimy,
 int dimy_eq,
 int numinitpts,
 double[] c,
 double[] xlow,
 double[] xup,
 double[] Flow,
 double[] Fup,
 double[] initpts)

Main constructor.

Parameters:
dimx - Number of input variables. See dimx.

dimy - Number of explicit equality constraints. See dimy.

dimy_eq - Number of implicit equality constraints. See
 dimy_eq.

numinitpts - Number of user-specified starting points. See
 numinitpts.

c - Coefficients in the (linear) objective function. See c.

xlow - Lower bounds for input variables. See xlow.

xup - Upper bounds for input variables. See xup.

Flow - Lower bounds for explicit equality constraints. See
 Flow.

Fup - Upper bounds for explicit equality constraints. See
 Fup.

initpts - User-provided starting points. See initpts.

Page 12 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

OptimizationProblem
public OptimizationProblem(int dimx,
 int dimy,
 int dimy_eq,
 int numinitpts,
 double[] c,
 double[] xlow,
 double[] xup,
 double[] Flow,
 double[] Fup,
 double[][] initpts)

Convenience constructor.

 This constructor overload is syntactic sugar allowing to pass a
 2-dimensional array as initpts.

Parameters:
dimx - Number of input variables. See dimx.

dimy - Number of explicit equality constraints. See dimy.

dimy_eq - Number of implicit equality constraints. See
 dimy_eq.

numinitpts - Number of user-specified starting points. See
 numinitpts.

c - Coefficients in the (linear) objective function. See c.

xlow - Lower bounds for input variables. See xlow.

xup - Upper bounds for input variables. See xup.

Flow - Lower bounds for explicit equality constraints. See
 Flow.

Fup - Upper bounds for explicit equality constraints. See
 Fup.

initpts - User-provided starting points. See initpts.

Methods

getCPtr
protected static long getCPtr(OptimizationProblem obj)

finalize
protected void finalize()

Page 13 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

delete
public void delete()

swigDirectorDisconnect
protected void swigDirectorDisconnect()

swigReleaseOwnership
public void swigReleaseOwnership()

swigTakeOwnership
public void swigTakeOwnership()

solve
public void solve(SolverParameters params)

Main entry point of the BBOWDA object-oriented API.

 Runs the BBOWDA algorithm on this problem with the given parameters.

Parameters:
params - The solver parameters for the BBOWDA algorithm.

getDimx
public int getDimx()

Number of input variables.

 The vector dimension of x.

getDimy
public int getDimy()

Number of explicit equality constraints.

 The vector dimension of y = F1(x). Also known as the number of
 interval inequality constraints if the coefficients of y in c
 are 0.

getDimyEq
public int getDimyEq()

Page 14 of 22

com.dagopt.bbowda.OptimizationProblem

(continued from last page)

Number of implicit equality constraints.

 Vector dimension of F2(x).

getNuminitpts
public int getNuminitpts()

Number of user-specified starting points.

 Can be 0. If no or not enough starting points are provided by the user,
 BBOWDA will automatically sample some starting points within the
 bounds.

getC
public double[] getC()

Coefficients in the (linear) objective function.

 The coefficient vector c. Must have dimension dimx + dimy.
 First list all coefficients of x in order, then all coefficients of
 y = F1(x) in order.

getXlow
public double[] getXlow()

Lower bounds for input variables.

 Lower bounds for x. Must have dimension dimx.

getXup
public double[] getXup()

Upper bounds for input variables.

 Upper bounds for x. Must have dimension dimx.

getFlow
public double[] getFlow()

Lower bounds for explicit equality constraints.

 Lower bounds for y = F1(x). Must have dimension dimy.

 Note: No bounds need to be specified for the implicit equality
 constraints F2(x) because those bounds are by definition always 0.

getFup
public double[] getFup()

Upper bounds for explicit equality constraints.

 Upper bounds for y = F1(x). Must have dimension dimy.

 Note: No bounds need to be specified for the implicit equality
 constraints F2(x) because those bounds are by definition always 0.

Page 15 of 22

com.dagopt.bbowda.OptimizationProblem

getInitptsvec
public double[] getInitptsvec()

User-provided starting points, as a contiguous array.

 Must be a contiguous matrix of dimension numinitpts * dimx
 (in row-major order, i.e., first all components of the first starting
 point, then the second one, etc.). If numinitpts is 0, this is
 just an empty vector (and can be NULL).

evaluateF
protected void evaluateF(double[] x,
 double[] F)

Pure virtual callback evaluating the black box function.

 Callback evaluating the black box function (or obtaining the evaluation
 result from an external source) at the point x (of dimension
 dimx) and writing the result to F (of dimension dimy +
 dimy_eq). Must be implemented by the user through subclassing.

 Note: There is no user_data pointer because any user data can and
 should be included in the user-provided subclass.

getInitpts
public double[][] getInitpts()

User-provided starting points, as a 2-dimensional jagged array.

 A jagged matrix of dimension numinitpts * dimx
 (in row-major order, i.e., first all components of the first starting
 point, then the second one, etc.). If numinitpts is 0, this array is empty.

Page 16 of 22

com.dagopt.bbowda.OptimizationProblem

com.dagopt.bbowda
Class SolverParameters

java.lang.Object
 |
 +-com.dagopt.bbowda.SolverParameters

public class SolverParameters
extends java.lang.Object

Solver parameters for the BBOWDA algorithm.

 Parameters allowing to tune how the BBOWDA algorithm operates.

Field Summary
protected transient swigCMemOwn

Constructor Summary
protected SolverParameters(long cPtr, boolean cMemoryOwn)

public SolverParameters(long maxpts, double optimum_tol, boolean
global_search_ignores_eq_constraints, double estimate_constraint_tol)

Constructor.

Method Summary
void delete()

void finalize()

static long getCPtr(SolverParameters obj)

double getEstimateConstraintTol()

Tolerance for the constraints estimating the implicit equality constraints during global
search. If global_search_ignores_eq_constraints is false, the global search attempts to
estimate global enclosures for the implicit equality constraints.

boolean getGlobalSearchIgnoresEqConstraints()

Whether to ignore implicit equality constraints for global search. True means that implicit
equality constraints will be ignored by the global search.

long getMaxpts()

Maximum number of points to evaluate. Currently, the algorithm will always run until
exactly this many points are evaluated, because no other stopping criteria are implemented
yet. In the presence of implicit equality constraints, it may then evaluate one more point for
the final extrapolation attempt.

Page 17 of 22

com.dagopt.bbowda.SolverParameters

double getOptimumTol()

Tolerance for optimum feasibility (infinity norm). A point will be considered feasible, and
thus a valid candidate for the optimum, if the bound constraints for x are satisfied exactly,
and if none of the other constraints is violated by more than optimum_tol, i.e., if the
componentwise inequalities Flow - optimum_tol <= F1(x) <= Fup + optimum_tol and -
optimum_tol < F2(x) < optimum_tol hold.

void setEstimateConstraintTol(double value)

Tolerance for the constraints estimating the implicit equality constraints during global
search. If global_search_ignores_eq_constraints is false, the global search attempts to
estimate global enclosures for the implicit equality constraints.

void setGlobalSearchIgnoresEqConstraints(boolean value)

Whether to ignore implicit equality constraints for global search. True means that implicit
equality constraints will be ignored by the global search.

void setMaxpts(long value)

Maximum number of points to evaluate. Currently, the algorithm will always run until
exactly this many points are evaluated, because no other stopping criteria are implemented
yet. In the presence of implicit equality constraints, it may then evaluate one more point for
the final extrapolation attempt.

void setOptimumTol(double value)

Tolerance for optimum feasibility (infinity norm). A point will be considered feasible, and
thus a valid candidate for the optimum, if the bound constraints for x are satisfied exactly,
and if none of the other constraints is violated by more than optimum_tol, i.e., if the
componentwise inequalities Flow - optimum_tol <= F1(x) <= Fup + optimum_tol and -
optimum_tol < F2(x) < optimum_tol hold.

Methods inherited from class java.lang.Object

clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait,
wait

Fields

swigCMemOwn
protected transient boolean swigCMemOwn

Constructors

SolverParameters
protected SolverParameters(long cPtr,
 boolean cMemoryOwn)

SolverParameters
public SolverParameters(long maxpts,
 double optimum_tol,
 boolean global_search_ignores_eq_constraints,
 double estimate_constraint_tol)

Page 18 of 22

com.dagopt.bbowda.SolverParameters

(continued from last page)

Constructor.

Parameters:
maxpts - Maximum number of points to evaluate. See maxpts.

optimum_tol - Tolerance for optimum feasibility (infinity norm).
 See optimum_tol.

global_search_ignores_eq_constraints - Whether to ignore implicit
 equality constraints for global search. See
 global_search_ignores_eq_constraints.

estimate_constraint_tol - Tolerance for the constraints estimating
 the implicit equality constraints during
 global search. See
 estimate_constraint_tol.

Methods

getCPtr
protected static long getCPtr(SolverParameters obj)

finalize
protected void finalize()

delete
public void delete()

setMaxpts
public void setMaxpts(long value)

Maximum number of points to evaluate.

 Currently, the algorithm will always run until exactly this many points
 are evaluated, because no other stopping criteria are implemented yet.
 In the presence of implicit equality constraints, it may then evaluate
 one more point for the final extrapolation attempt.

getMaxpts
public long getMaxpts()

Maximum number of points to evaluate.

 Currently, the algorithm will always run until exactly this many points
 are evaluated, because no other stopping criteria are implemented yet.
 In the presence of implicit equality constraints, it may then evaluate
 one more point for the final extrapolation attempt.

Page 19 of 22

com.dagopt.bbowda.SolverParameters

(continued from last page)

setOptimumTol
public void setOptimumTol(double value)

Tolerance for optimum feasibility (infinity norm).

 A point will be considered feasible, and thus a valid candidate for the
 optimum, if the bound constraints for x are satisfied exactly, and
 if none of the other constraints is violated by more than
 optimum_tol, i.e., if the componentwise inequalities Flow -
 optimum_tol <= F1(x) <= Fup + optimum_tol and -
 optimum_tol < F2(x) < optimum_tol hold. In vector terms, this
 means that the infinity norm of the constraint violation must be less
 than optimum_tol.

getOptimumTol
public double getOptimumTol()

Tolerance for optimum feasibility (infinity norm).

 A point will be considered feasible, and thus a valid candidate for the
 optimum, if the bound constraints for x are satisfied exactly, and
 if none of the other constraints is violated by more than
 optimum_tol, i.e., if the componentwise inequalities Flow -
 optimum_tol <= F1(x) <= Fup + optimum_tol and -
 optimum_tol < F2(x) < optimum_tol hold. In vector terms, this
 means that the infinity norm of the constraint violation must be less
 than optimum_tol.

setGlobalSearchIgnoresEqConstraints
public void setGlobalSearchIgnoresEqConstraints(boolean value)

Whether to ignore implicit equality constraints for global
 search.

 True means that implicit equality constraints will be ignored by the
 global search. Hence, it will suggest evaluation points to fill any
 gaps in the search space even if they are nowhere near feasible for the
 implicit equality constraints.

 False means that implicit equality constraints will be honored by the
 global search. The global search will compute estimates that attempt to
 globally enclose the implicit equality constraints with the help of an
 external LP solver, helping to suggest only points that are expected to
 be approximately feasible.

 This parameter has no effect if the problem does not include any
 implicit equality constraints.

getGlobalSearchIgnoresEqConstraints
public boolean getGlobalSearchIgnoresEqConstraints()

Page 20 of 22

com.dagopt.bbowda.SolverParameters

(continued from last page)

Whether to ignore implicit equality constraints for global
 search.

 True means that implicit equality constraints will be ignored by the
 global search. Hence, it will suggest evaluation points to fill any
 gaps in the search space even if they are nowhere near feasible for the
 implicit equality constraints.

 False means that implicit equality constraints will be honored by the
 global search. The global search will compute estimates that attempt to
 globally enclose the implicit equality constraints with the help of an
 external LP solver, helping to suggest only points that are expected to
 be approximately feasible.

 This parameter has no effect if the problem does not include any
 implicit equality constraints.

setEstimateConstraintTol
public void setEstimateConstraintTol(double value)

Tolerance for the constraints estimating the implicit equality
 constraints during global search.

 If global_search_ignores_eq_constraints is false, the global
 search attempts to estimate global enclosures for the implicit equality
 constraints. But those enclosures are estimated approximations and not
 guaranteed to hold exactly. This tolerance specifies by how much the
 bounds for the estimated enclosures should be relaxed to account for
 that.

 This parameter has no effect if the problem does not include any
 implicit equality constraints or if
 global_search_ignores_eq_constraints is true.

getEstimateConstraintTol
public double getEstimateConstraintTol()

Tolerance for the constraints estimating the implicit equality
 constraints during global search.

 If global_search_ignores_eq_constraints is false, the global
 search attempts to estimate global enclosures for the implicit equality
 constraints. But those enclosures are estimated approximations and not
 guaranteed to hold exactly. This tolerance specifies by how much the
 bounds for the estimated enclosures should be relaxed to account for
 that.

 This parameter has no effect if the problem does not include any
 implicit equality constraints or if
 global_search_ignores_eq_constraints is true.

Page 21 of 22

Index

Index
B

Bbowda 3

BbowdaJNI 5

D

delete 13, 19

delete_OptimizationProblem 7

delete_SolverParameters 7

E

evaluateF 16

F

finalize 13, 19

G

getC 15

getCPtr 13, 19

getDimx 14

getDimy 14

getDimyEq 14

getEstimateConstraintTol 21

getFlow 15

getFup 15

getGlobalSearchIgnoresEqConstraints 20

getInitpts 16

getInitptsvec 16

getMaxpts 19

getNuminitpts 15

getOptimumTol 20

getXlow 15

getXup 15

N

new_OptimizationProblem 7

new_SolverParameters 5

O

OptimizationProblem 12

OptimizationProblem_c_get 8

OptimizationProblem_change_ownership 9

OptimizationProblem_dimx_get 7

OptimizationProblem_dimy_get 7

OptimizationProblem_dimyEq_get 8

OptimizationProblem_director_connect 9

OptimizationProblem_evaluateF 9

OptimizationProblem_flow_get 8

OptimizationProblem_fup_get 8

OptimizationProblem_initptsvec_get 8

OptimizationProblem_numinitpts_get 8

OptimizationProblem_solve 7

OptimizationProblem_xlow_get 8

OptimizationProblem_xup_get 8

S

setEstimateConstraintTol 21

setGlobalSearchIgnoresEqConstraints 20

setMaxpts 19

setOptimumTol 19

solve 14

SolverParameters 18

SolverParameters_estimateConstraintTol_get 7

SolverParameters_estimateConstraintTol_set 6

SolverParameters_globalSearchIgnoresEqConstraints_get 6

SolverParameters_globalSearchIgnoresEqConstraints_set 6

SolverParameters_maxpts_get 6

SolverParameters_maxpts_set 6

SolverParameters_optimumTol_get 6

SolverParameters_optimumTol_set 6

srand 3, 9

swigCMemOwn 11, 18

SwigDirector_OptimizationProblem_evaluateF 9

swigDirectorDisconnect 14

swigReleaseOwnership 14

swigTakeOwnership 14

Page 22 of 22

Index

	All Classes
	Bbowda
	Constructors
	Bbowda()

	Methods
	srand(long)

	BbowdaJNI
	Constructors
	BbowdaJNI()

	Methods
	OptimizationProblem_c_get(long, OptimizationProblem)
	OptimizationProblem_change_ownership(OptimizationProblem, long, boolean)
	OptimizationProblem_dimx_get(long, OptimizationProblem)
	OptimizationProblem_dimyEq_get(long, OptimizationProblem)
	OptimizationProblem_dimy_get(long, OptimizationProblem)
	OptimizationProblem_director_connect(OptimizationProblem, long, boolean, boolean)
	OptimizationProblem_evaluateF(long, OptimizationProblem, double[], double[])
	OptimizationProblem_flow_get(long, OptimizationProblem)
	OptimizationProblem_fup_get(long, OptimizationProblem)
	OptimizationProblem_initptsvec_get(long, OptimizationProblem)
	OptimizationProblem_numinitpts_get(long, OptimizationProblem)
	OptimizationProblem_solve(long, OptimizationProblem, long, SolverParameters)
	OptimizationProblem_xlow_get(long, OptimizationProblem)
	OptimizationProblem_xup_get(long, OptimizationProblem)
	SolverParameters_estimateConstraintTol_get(long, SolverParameters)
	SolverParameters_estimateConstraintTol_set(long, SolverParameters, double)
	SolverParameters_globalSearchIgnoresEqConstraints_get(long, SolverParameters)
	SolverParameters_globalSearchIgnoresEqConstraints_set(long, SolverParameters, boolean)
	SolverParameters_maxpts_get(long, SolverParameters)
	SolverParameters_maxpts_set(long, SolverParameters, long)
	SolverParameters_optimumTol_get(long, SolverParameters)
	SolverParameters_optimumTol_set(long, SolverParameters, double)
	SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem, double[], double[])
	delete_OptimizationProblem(long)
	delete_SolverParameters(long)
	new_OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[])
	new_SolverParameters(long, double, boolean, double)
	srand(long)

	OptimizationProblem
	Fields
	swigCMemOwn

	Constructors
	OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[][])

	Methods
	delete()
	evaluateF(double[], double[])
	finalize()
	getC()
	getCPtr(OptimizationProblem)
	getDimx()
	getDimy()
	getDimyEq()
	getFlow()
	getFup()
	getInitpts()
	getInitptsvec()
	getNuminitpts()
	getXlow()
	getXup()
	solve(SolverParameters)
	swigDirectorDisconnect()
	swigReleaseOwnership()
	swigTakeOwnership()

	SolverParameters
	Fields
	swigCMemOwn

	Constructors
	SolverParameters(long, double, boolean, double)

	Methods
	delete()
	finalize()
	getCPtr(SolverParameters)
	getEstimateConstraintTol()
	getGlobalSearchIgnoresEqConstraints()
	getMaxpts()
	getOptimumTol()
	setEstimateConstraintTol(double)
	setGlobalSearchIgnoresEqConstraints(boolean)
	setMaxpts(long)
	setOptimumTol(double)

	Packages
	com.dagopt.bbowda
	Bbowda
	Constructors
	Bbowda()

	Methods
	srand(long)

	BbowdaJNI
	Constructors
	BbowdaJNI()

	Methods
	OptimizationProblem_c_get(long, OptimizationProblem)
	OptimizationProblem_change_ownership(OptimizationProblem, long, boolean)
	OptimizationProblem_dimx_get(long, OptimizationProblem)
	OptimizationProblem_dimyEq_get(long, OptimizationProblem)
	OptimizationProblem_dimy_get(long, OptimizationProblem)
	OptimizationProblem_director_connect(OptimizationProblem, long, boolean, boolean)
	OptimizationProblem_evaluateF(long, OptimizationProblem, double[], double[])
	OptimizationProblem_flow_get(long, OptimizationProblem)
	OptimizationProblem_fup_get(long, OptimizationProblem)
	OptimizationProblem_initptsvec_get(long, OptimizationProblem)
	OptimizationProblem_numinitpts_get(long, OptimizationProblem)
	OptimizationProblem_solve(long, OptimizationProblem, long, SolverParameters)
	OptimizationProblem_xlow_get(long, OptimizationProblem)
	OptimizationProblem_xup_get(long, OptimizationProblem)
	SolverParameters_estimateConstraintTol_get(long, SolverParameters)
	SolverParameters_estimateConstraintTol_set(long, SolverParameters, double)
	SolverParameters_globalSearchIgnoresEqConstraints_get(long, SolverParameters)
	SolverParameters_globalSearchIgnoresEqConstraints_set(long, SolverParameters, boolean)
	SolverParameters_maxpts_get(long, SolverParameters)
	SolverParameters_maxpts_set(long, SolverParameters, long)
	SolverParameters_optimumTol_get(long, SolverParameters)
	SolverParameters_optimumTol_set(long, SolverParameters, double)
	SwigDirector_OptimizationProblem_evaluateF(OptimizationProblem, double[], double[])
	delete_OptimizationProblem(long)
	delete_SolverParameters(long)
	new_OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[])
	new_SolverParameters(long, double, boolean, double)
	srand(long)

	OptimizationProblem
	Fields
	swigCMemOwn

	Constructors
	OptimizationProblem(int, int, int, int, double[], double[], double[], double[], double[], double[][])

	Methods
	delete()
	evaluateF(double[], double[])
	finalize()
	getC()
	getCPtr(OptimizationProblem)
	getDimx()
	getDimy()
	getDimyEq()
	getFlow()
	getFup()
	getInitpts()
	getInitptsvec()
	getNuminitpts()
	getXlow()
	getXup()
	solve(SolverParameters)
	swigDirectorDisconnect()
	swigReleaseOwnership()
	swigTakeOwnership()

	SolverParameters
	Fields
	swigCMemOwn

	Constructors
	SolverParameters(long, double, boolean, double)

	Methods
	delete()
	finalize()
	getCPtr(SolverParameters)
	getEstimateConstraintTol()
	getGlobalSearchIgnoresEqConstraints()
	getMaxpts()
	getOptimumTol()
	setEstimateConstraintTol(double)
	setGlobalSearchIgnoresEqConstraints(boolean)
	setMaxpts(long)
	setOptimumTol(double)

	Index

