bbowda

Generated by Doxygen 1.9.1

1 Main Page
1.1 Introduction L e e e e e
1.2 APl Documentation L e
1.2.1 CAPI (Procedural API) e
1.2.2 C++ API (Object-oriented API)

2 Namespace Index

2.1 Namespace List e

3 Hierarchical Index

3.1 Class Hierarchy e

4 Class Index
41 Class List e e e

5 File Index
S5 FileList e e

6 Namespace Documentation

6.1 Bbowda Namespace Reference

7 Class Documentation

7.1 bbowda_params Struct Reference
7.1.1 Detailed Description e

7.1.2 Member Data Documentation L

7.1.2.1 estimate_constraint_tol

7.1.2.2 global_search_ignores_eq_constraints oL

7123 maxpts ..o e

7424 0ptimum_tol L

7.2 bbowda_problem Struct Reference
7.2.1 Detailed Description

7.2.2 Member Data Documentation e e e

7.223diMy . .o
7.224dimy_€q
T7225Flow e e
T22B6FUp . . . e
T2271INMPIS_P
7228 numinitpts L L L
T229XI0W . . . L
T22A0XUP e e
7.3 Bbowda::OptimizationProblem Class Reference,

7.3.1 Detailed Description L

N DD =

()

11
11

Generated by Doxygen

7.3.2 Constructor & Destructor Documentation oL 19

7.3.2.1 OptimizationProblem() 20

7.3.2.2 ~OptimizationProblem() 20

7.3.3 Member Function Documentation L 20
7.33.1evaluateF() 20

7.33.280Ive() e 21

7.4 Bbowda::SolverParameters Class Reference 21
7.41 Detailed Description L 22

7.4.2 Constructor & Destructor Documentation oL 22

7.4.2.1 SolverParameters() 22

8 File Documentation 25
8.1 bbowda.h File Reference 25
8.1.1 Function Documentation 26

811 1bbowda() e 26

8.2 bbowdapp/bbowdapp.hh File Reference 26
Index 29

Generated by Doxygen

Chapter 1

Main Page

1.1 Introduction

BBOWDA is an algorithm and a reference implementation to solve optimization problems where:

* both the objective function and the constraints may be black box functions,

» we do not have any gradient or Hessian information for those black box functions,

« the functions are assumed to be expensive to compute, thus the number of function evaluations shall be kept
as small as possible,

using methods from data analysis:

« covariance models,

+ Gaussian mixture models (GMMs) and the Expectation-Maximization (EM) iteration, and

« ratio-reject (outlier rejection algorithm by Tax and Duin).
The algorithm is a so-called incomplete global optimizer, i.e. it attempts to find a global solution for the optimization
problem, but is unable to guarantee globality. In fact, it cannot even guarantee always finding a local optimum, due

to the lack of gradients and any sort of global information. Despite this lack of guarantees, the algorithm performs
well in practice.

BBOWDA is a surrogate model method, hence it depends on third-party solvers for Non-Linear (optimization) Pro-
grams (NLPs) and Linear (optimization) Programs (LPs).

For NLPs, BBOWDA currently supports any of:

+ NLopt SLSQP (MIT and 3-clause BSD licenses),

+ Ipopt from COIN-OR (Eclipse Public License version 2.0),

« DONLP?2 (donlp2_intv_dyn) by Prof. Peter Spellucci (free for research only),

* DONLPS (reentrant C++ version of DONLP2, see above, from COCONUT).
Note that DONLP2 is NOT reentrant. Use another solver if you require BBOWDA to be reentrant. All other currently
supported solvers (including DONLP3) are reentrant.
For LPs, BBOWDA currently requires Ip_solve (GNU LGPL version 2.1 or later).

The implementation is licensed under the GNU General Public License, version 3 or later, with special exceptions
allowing to link with the third-party optimizers used. See licenses.txt for details.

Generated by Doxygen

2 Main Page

1.2 API Documentation

This documentation documents the public C and C++ API of BBOWDA.

1.21 C API (Procedural API)

See bbowda.h. The main entry point is bbowda.

1.2.2 C++ API (Object-oriented API)

See bbowdapp/bbowdapp.hh. The main entry point is Bbowda::OptimizationProblem::solve.

Generated by Doxygen

Chapter 2

Namespace Index

2.1 Namespace List

Here is a list of all namespaces with brief descriptions:

Bbowda e

Generated by Doxygen

Namespace Index

Generated by Doxygen

Chapter 3

Hierarchical Index

3.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

bbowda_params L L L
Bbowda::SolverParameters

bbowda_problem L
Bbowda::OptimizationProblem

Generated by Doxygen

Hierarchical Index

Generated by Doxygen

Chapter 4

Class Index

4.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

bbowda_params

Solver parameters for the BBOWDA algorithm 13
bbowda_problem
Constants that, together with the black box function, define a black box optimization problem . 15

Bbowda::OptimizationProblem

Definition of a black box optimization problem
Bbowda::SolverParameters

Solver parameters for the BBOWDA algorithm

Generated by Doxygen

Class Index

Generated by Doxygen

Chapter 5

File Index

5.1 File List

Here is a list of all files with brief descriptions:

bbowda.h e
bbowdapp/bbowdapp.hh

Generated by Doxygen

10

File Index

Generated by Doxygen

Chapter 6

Namespace Documentation

6.1 Bbowda Namespace Reference

Classes

 class SolverParameters

Solver parameters for the BBOWDA algorithm.
* class OptimizationProblem

Definition of a black box optimization problem.

Generated by Doxygen

12

Namespace Documentation

Generated by Doxygen

Chapter 7

Class Documentation

7.1 bbowda_params Struct Reference

Solver parameters for the BBOWDA algorithm.
#include <bbowda.h>

Inheritance diagram for bbowda_params:

bbowda_params

Bbowda::SolverParameters

Public Attributes

* size_t maxpts
Maximum number of points to evaluate.
 double optimum_tol

Tolerance for optimum feasibility (infinity norm).
« int global_search_ignores_eq_constraints

Whether to ignore implicit equality constraints for global search.
» double estimate_constraint_tol

Tolerance for the constraints estimating the implicit equality constraints during global search.

Generated by Doxygen

14 Class Documentation

7.1.1 Detailed Description

Solver parameters for the BBOWDA algorithm.

Parameters allowing to tune how the BBOWDA algorithm operates.

7.1.2 Member Data Documentation

7.1.2.1 estimate_constraint_tol

double bbowda_params::estimate_constraint_tol

Tolerance for the constraints estimating the implicit equality constraints during global search.

If global_search_ignores_eq_constraints is false (zero), the global search attempts to estimate global enclosures
for the implicit equality constraints. But those enclosures are estimated approximations and not guaranteed to hold
exactly. This tolerance specifies by how much the bounds for the estimated enclosures should be relaxed to account

for that.

This parameter has no effect if the problem does not include any implicit equality constraints or if
global_search_ignores_eq_constraints is true (non-zero).

7.1.2.2 global_search_ignores_eq_constraints

int bbowda_params::global_search_ignores_eq_constraints

Whether to ignore implicit equality constraints for global search.

A true (non-zero) value means that implicit equality constraints will be ignored by the global search. Hence, it will
suggest evaluation points to fill any gaps in the search space even if they are nowhere near feasible for the implicit
equality constraints.

The false (zero) value means that implicit equality constraints will be honored by the global search. The global
search will compute estimates that attempt to globally enclose the implicit equality constraints with the help of an

external LP solver, helping to suggest only points that are expected to be approximately feasible.

This parameter has no effect if the problem does not include any implicit equality constraints.

7.1.2.3 maxpts

size_t bbowda_params: :maxpts
Maximum number of points to evaluate.
Currently, the algorithm will always run until exactly this many points are evaluated, because no other stopping

criteria are implemented yet. In the presence of implicit equality constraints, it may then evaluate one more point for
the final extrapolation attempt.

Generated by Doxygen

7.2 bbowda_problem Struct Reference 15

7.1.2.4 optimum_tol

double bbowda_params::optimum_tol

Tolerance for optimum feasibility (infinity norm).

A point will be considered feasible, and thus a valid candidate for the optimum, if the bound constraints for x are
satisfied exactly, and if none of the other constraints is violated by more than optimum_tol, i.e., if the componentwise
inequalities Flow - optimum_tol <= F1(x) <= Fup + optimum_tol and - optimum_tol < F2(x) < optimum_tol hold. In

vector terms, this means that the infinity norm of the constraint violation must be less than optimum_tol.

The documentation for this struct was generated from the following file:

* bbowda.h

7.2 bbowda_problem Struct Reference

Constants that, together with the black box function, define a black box optimization problem.
#include <bbowda.h>

Inheritance diagram for bbowda_problem:

bbowda_problem

Bbowda::OptimizationProblem

Public Attributes

* int dimx

Number of input variables.
* int dimy

Number of explicit equality constraints.
» intdimy_eq

Number of implicit equality constraints.
* int numinitpts

Number of user-specified starting points.
» const double x ¢

Coefficients in the (linear) objective function.
+ const double * xlow

Lower bounds for input variables.

Generated by Doxygen

16 Class Documentation

 const double * xup

Upper bounds for input variables.
» const double x Flow

Lower bounds for explicit equality constraints.
» const double x Fup

Upper bounds for explicit equality constraints.
» const double x initpts_p

User-provided starting points.

7.2.1 Detailed Description

Constants that, together with the black box function, define a black box optimization problem.

The problem is assumed to be of the form:

min cT (x ; V)

s.t. y = Fl(x) [explicit equality constraints]
F2(x) = 0 [implicit equality constraints]
xlow <= x <= xup
Flow <= y <= Fup

7.2.2 Member Data Documentation

7221 c

const doublex bbowda_problem::c
Coefficients in the (linear) objective function.
The coefficient vector c. Must have dimension dimx + dimy. First list all coefficients of x in order, then all coefficients

of y=F1(x) in order.

7.2.2.2 dimx

int bbowda_problem: :dimx
Number of input variables.

The vector dimension of x.

7.2.2.3 dimy

int bbowda_problem::dimy
Number of explicit equality constraints.

The vector dimension of y = F1(x). Also known as the number of interval inequality constraints if the coefficients of
yincare 0.

Generated by Doxygen

7.2 bbowda_problem Struct Reference 17

7.2.2.4 dimy_eq

int bbowda_problem::dimy_eq
Number of implicit equality constraints.

Vector dimension of F2(x).

7.2.2.5 Flow

const doublex bbowda_problem: :Flow
Lower bounds for explicit equality constraints.
Lower bounds for y = F1(x). Must have dimension dimy.

Note

No bounds need to be specified for the implicit equality constraints F2(x) because those bounds are by defini-
tion always 0.

7.2.2.6 Fup

const doublex bbowda_problem: :Fup
Upper bounds for explicit equality constraints.

Upper bounds for y = F1(x). Must have dimension dimy.

Note

No bounds need to be specified for the implicit equality constraints F2(x) because those bounds are by defini-
tion always 0.

7.2.2.7 initpts_p

const doublex bbowda_problem::initpts_p
User-provided starting points.

Must be a contiguous matrix of dimension numinitpts * dimx (in row-major order, i.e., first all components of
the first starting point, then the second one, etc.). If numinitpts is 0, this is just an empty vector (and can be
NULL). Otherwise, it can be a pointer of the form sinitpts[0] [0], where inifpts is defined as double
initpts[numinitpts] [dimx]. (In fact, that will work in practice even if numinitpts is 0 because C allows
pointers to the end of an array.)

Generated by Doxygen

18 Class Documentation

7.2.2.8 numinitpts

int bbowda_problem::numinitpts
Number of user-specified starting points.

Can be 0. If no or not enough starting points are provided by the user, BBOWDA will automatically sample some
starting points within the bounds.

7.2.29 xlow

const doublex bbowda_problem: :xlow
Lower bounds for input variables.

Lower bounds for x. Must have dimension dimx.

7.2.2.10 xup

const doublex bbowda_problem: :xup
Upper bounds for input variables.
Upper bounds for x. Must have dimension dimx.

The documentation for this struct was generated from the following file:

* bbowda.h

7.3 Bbowda::OptimizationProblem Class Reference

Definition of a black box optimization problem.
#include <bbowdapp.hh>

Inheritance diagram for Bbowda::OptimizationProblem:

bbowda_problem

Bbowda::OptimizationProblem

Generated by Doxygen

7.3 Bbowda::OptimizationProblem Class Reference

19

Collaboration diagram for Bbowda::OptimizationProblem:

bbowda_problem

A

Bbowda::OptimizationProblem

Public Member Functions

» OptimizationProblem (int dimx, int dimy, int dimy_eq, int numinitpts, const double *c, const double xxlow,
const double *xxup, const double xFlow, const double «xFup, const double xinitpts_p, bool copyVectors=true)

Main constructor.
* virtual ~OptimizationProblem ()

Virtual destructor.
+ void solve (const SolverParameters ¶ms)

Main entry point of the BBOWDA C++ API.

Protected Member Functions

« virtual void evaluateF (const double xx, double *F)=0

Pure virtual callback evaluating the black box function.

Additional Inherited Members

7.3.1 Detailed Description

Definition of a black box optimization problem.

This class represents both the constants (inherited from bbowda_problem) and the black box function (in the form of
the pure virtual method evaluateF) that together represent the black box optimization problem. Subclass this class

to implement your optimization problem.

The problem is assumed to be of the form:

min cT (x ; V)

s.t. vy = Fl(x) [explicit equality constraints]
F2(x) = 0 [implicit equality constraints]
xlow <= x <= xup
Flow <= y <= Fup

7.3.2 Constructor & Destructor Documentation

Generated by Doxygen

20 Class Documentation

7.3.2.1 OptimizationProblem()

Bbowda: :OptimizationProblem: :OptimizationProblem (
int dimx,
int dimy,
int dimy_egq,
int numinitpts,
const double *x c,
const double * xlow,
const double * xup,
const double * Flow,
const double *x Fup,
const double * initpts_p,

bool copyVectors = true)

Main constructor.

Parameters
dimx Number of input variables. See dimx.
dimy Number of explicit equality constraints. See dimy.
dimy_eq Number of implicit equality constraints. See dimy_eq.
numinitpts Number of user-specified starting points. See numinitpts.
c Coefficients in the (linear) objective function. See c.
xlow Lower bounds for input variables. See xlow.
xup Upper bounds for input variables. See xup.
Flow Lower bounds for explicit equality constraints. See Flow.
Fup Upper bounds for explicit equality constraints. See Fup.
initpts_p User-provided starting points. See initpts_p.

copyVectors | Whether to copy the vectors.

7.3.2.2 ~OptimizationProblem()

virtual Bbowda::0OptimizationProblem: :~OptimizationProblem () [virtual]

Virtual destructor.

7.3.3 Member Function Documentation

7.3.3.1 evaluateF()

virtual void Bbowda::0OptimizationProblem::evaluateF (
const double * x,

double x F) [protected], [pure virtuall]
Pure virtual callback evaluating the black box function.

Callback evaluating the black box function (or obtaining the evaluation result from an external source) at the point
x (of dimension dimx) and writing the result to F (of dimension dimy + dimy_eq). Must be implemented by the user
through subclassing.

Generated by Doxygen

7.4 Bbowda::SolverParameters Class Reference 21

Note

There is no user_data pointer because any user data can and should be included in the user-provided sub-
class.

7.3.3.2 solve()

void Bbowda::0OptimizationProblem::solve (

const SolverParameters & params)
Main entry point of the BBOWDA C++ API.
Runs the BBOWDA algorithm on this problem with the given parameters.

Object-oriented wrapper around the C API entry point bbowda.

Parameters

‘ params ‘ The solver parameters for the BBOWDA algorithm.

The documentation for this class was generated from the following file:

» bbowdapp/bbowdapp.hh

7.4 Bbowda::SolverParameters Class Reference

Solver parameters for the BBOWDA algorithm.
#include <bbowdapp.hh>

Inheritance diagram for Bbowda::SolverParameters:

bbowda_params

Bbowda::SolverParameters

Generated by Doxygen

22 Class Documentation

Collaboration diagram for Bbowda::SolverParameters:

bbowda_params

A

Bbowda::SolverParameters

Public Member Functions

» SolverParameters (size_t maxpts, double optimum_tol, bool global_search_ignores_eq_constraints, double
estimate_constraint_tol)

Constructor.

Additional Inherited Members

7.4.1 Detailed Description

Solver parameters for the BBOWDA algorithm.

Parameters allowing to tune how the BBOWDA algorithm operates.

7.4.2 Constructor & Destructor Documentation

7.4.2.1 SolverParameters()

Bbowda: :SolverParameters: :SolverParameters (
size_t maxpts,
double optimum_tol,
bool global_ search _ignores_eq _constraints,

double estimate _constraint_tol)

Constructor.

Parameters
maxpts Maximum number of points to evaluate. See maxpts.
optimum_tol Tolerance for optimum feasibility (infinity norm). See optimum_tol.

global_search_ignores_eq_constraints | Whether to ignore implicit equality constraints for global search. See
global search_ignores eq_constraints.

estimate_constraint_tol Tolerance for the constraints estimating the implicit eqtaffgee » Poxveen
constraints during global search. See estimate_constraint_tol.

7.4 Bbowda::SolverParameters Class Reference

23

The documentation for this class was generated from the following file:

» bbowdapp/bbowdapp.hh

Generated by Doxygen

24

Class Documentation

Generated by Doxygen

Chapter 8

File Documentation

8.1 bbowda.h File Reference

#include "bbowda_export.h"
#include <stddef.h>
Include dependency graph for bbowda.h:

bbowda.h
bbowda_export.h stddef.h

This graph shows which files directly or indirectly include this file:

bbowda.h

T

bbowdapp/bbowdapp.hh

Generated by Doxygen

26 File Documentation

Classes

« struct bbowda_problem

Constants that, together with the black box function, define a black box optimization problem.
» struct bbowda_params

Solver parameters for the BBOWDA algorithm.

Functions

+ BBOWDA_EXPORT void bbowda (const struct bbowda_problem xproblem, const struct bbowda_params
xparams, void(xevaluate_F)(const struct bbowda_problem xproblem, const double xx, double xF, void
xuser_data), void xeval_user_data)

Main entry point of the BBOWDA C API.

8.1.1 Function Documentation

8.1.1.1 bbowda()

BBOWDA_EXPORT void bbowda (

const struct bbowda_problem % problem,

const struct bbowda_params * params,

void(*) (const struct bbowda_problem xproblem, const double xx, double xF, void
suser_data) evaluate_ F,

void x eval_user_data)
Main entry point of the BBOWDA C API.

Runs the BBOWDA algorithm on the given problem with the given parameters.

Parameters
problem The constants that, together with the black box function, define the problem.
params The solver parameters for the BBOWDA algorithm.
evaluate_F Function pointer to the callback evaluating the black box function (or obtaining the evaluation

result from an external source) at the point x (of dimension bbowda_problem::dimx) and
writing the result to F (of dimension bbowda_problem::dimy + bbowda_problem::dimy_eq).

eval_user_data | Pointer that will be passed unchanged as user_data to all invocations of evaluate_F.

8.2 bbowdapp/bbowdapp.hh File Reference

#include "bbowdapp_export.h"
#include "bbowda.h"
#include <cstddef>

Generated by Doxygen

8.2 bbowdapp/bbowdapp.hh File Reference

27

Include dependency graph for bbowdapp.hh:

bbowdapp/bbowdapp.hh

bbowdapp_export.h

bbowda_export.h

Classes

« class Bbowda::SolverParameters

bbowda.h

Y N\

Solver parameters for the BBOWDA algorithm.

« class Bbowda::OptimizationProblem

Definition of a black box optimization problem.

Namespaces

« Bbowda

cstddef

stddef.h

Generated by Doxygen

28

File Documentation

Generated by Doxygen

Index

~QOptimizationProblem
Bbowda::OptimizationProblem, 20

Bbowda, 11
bbowda
bbowda.h, 26
bbowda.h, 25
bbowda, 26
Bbowda::OptimizationProblem, 18
~QOptimizationProblem, 20
evaluateF, 20
OptimizationProblem, 19
solve, 21
Bbowda::SolverParameters, 21
SolverParameters, 22
bbowda_params, 13
estimate_constraint_tol, 14
global_search_ignores_eq_constraints, 14
maxpts, 14
optimum_tol, 14
bbowda_problem, 15
c, 16
dimx, 16
dimy, 16
dimy_eq, 16
Flow, 17
Fup, 17
initpts_p, 17
numinitpts, 17
xlow, 18
xup, 18
bbowdapp/bbowdapp.hh, 26

c
bbowda_problem, 16

dimx

bbowda_problem, 16
dimy

bbowda_problem, 16
dimy_eq

bbowda_problem, 16

estimate_constraint_tol
bbowda_params, 14

evaluateF
Bbowda::OptimizationProblem, 20

Flow
bbowda_problem, 17
Fup

bbowda_problem, 17

global_search_ignores_eq_constraints
bbowda_params, 14

initpts_p
bbowda_problem, 17

maxpts
bbowda_params, 14

numinitpts
bbowda_problem, 17

OptimizationProblem
Bbowda::OptimizationProblem, 19
optimum_tol
bbowda_params, 14

solve
Bbowda::OptimizationProblem, 21
SolverParameters
Bbowda::SolverParameters, 22

xlow

bbowda_problem, 18
Xup

bbowda_problem, 18

Generated by Doxygen

	1 Main Page
	1.1 Introduction
	1.2 API Documentation
	1.2.1 C API (Procedural API)
	1.2.2 C++ API (Object-oriented API)

	2 Namespace Index
	2.1 Namespace List

	3 Hierarchical Index
	3.1 Class Hierarchy

	4 Class Index
	4.1 Class List

	5 File Index
	5.1 File List

	6 Namespace Documentation
	6.1 Bbowda Namespace Reference

	7 Class Documentation
	7.1 bbowda_params Struct Reference
	7.1.1 Detailed Description
	7.1.2 Member Data Documentation
	7.1.2.1 estimate_constraint_tol
	7.1.2.2 global_search_ignores_eq_constraints
	7.1.2.3 maxpts
	7.1.2.4 optimum_tol

	7.2 bbowda_problem Struct Reference
	7.2.1 Detailed Description
	7.2.2 Member Data Documentation
	7.2.2.1 c
	7.2.2.2 dimx
	7.2.2.3 dimy
	7.2.2.4 dimy_eq
	7.2.2.5 Flow
	7.2.2.6 Fup
	7.2.2.7 initpts_p
	7.2.2.8 numinitpts
	7.2.2.9 xlow
	7.2.2.10 xup

	7.3 Bbowda::OptimizationProblem Class Reference
	7.3.1 Detailed Description
	7.3.2 Constructor & Destructor Documentation
	7.3.2.1 OptimizationProblem()
	7.3.2.2 OptimizationProblem()

	7.3.3 Member Function Documentation
	7.3.3.1 evaluateF()
	7.3.3.2 solve()

	7.4 Bbowda::SolverParameters Class Reference
	7.4.1 Detailed Description
	7.4.2 Constructor & Destructor Documentation
	7.4.2.1 SolverParameters()

	8 File Documentation
	8.1 bbowda.h File Reference
	8.1.1 Function Documentation
	8.1.1.1 bbowda()

	8.2 bbowdapp/bbowdapp.hh File Reference

	Index

