
DIPLOMARBEIT

Black Box Optimization with Data
Analysis

angestrebter akademischer Grad

Magister der Naturwissenschaften
(Mag. rer. nat.)

Verfasser: Kevin Ko�er

Matrikel-Nummer: 0100446

Studienrichtung: Mathematik

Betreuer: Ao. Univ.-Prof. Dipl.-Ing. Dr. Hermann Schichl

Wien, am 15. 11. 2007

2

Curriculum Vitae

Kevin Ko�er
born July 1st, 1983 in Oberpullendorf (Austria)
Italian citizen

Education
High school diploma: French baccalauréat général and Austrian AHS-Matura at
the Lycée Français de Vienne, Vienna, Austria, June 22nd resp. 29th, 2001
Studies: Mathematics and Software and Information Engineering at the
University of Vienna since winter term 2001
Foreign semester: Fall term 2001 at the Bowling Green State University, Bowling
Green, Ohio, USA

Awards
1st prize at the Rallye mathématique d'Alsace in 2000 and 2001
5th accessit at the French Concours général de Mathématiques in 2001

Jobs
Teaching assistant (Tutor) at the University of Vienna, March � July 2005
Teaching assistant (Tutor) at the University of Vienna, October 2005 � February
2006
Google Summer of Code, May � September 2006

3

4

Chapter 1

Introduction

This thesis presents an algorithm solving black box optimization problems using
mainly methods from data analysis and an implementation of this algorithm. In
this introduction, we will �rst present the purpose and goals of our algorithm, then
the organization of this thesis and �nally the thanks and acknowledgements.

1.1 Goals

The main goal of our thesis is to cross the barrier between the �elds of optimiza-
tion and data analysis by applying methods from data analysis to optimization
problems. In particular, we apply data analysis techniques to obtain information
about black box functions, i.e. functions for which we do not know an algebraic
expression.

We will present both an algorithm and a reference implementation to solve
optimization problems where:

• both the objective function and the constraints may be black box functions,

• we do not have any gradient or Hessian information for those black box
functions,

• the functions are assumed to be expensive to compute, thus the number of
function evaluations shall be kept as small as possible,

using methods from data analysis:

• covariance models,

• Gaussian mixture models (GMMs) and the Expectation-Maximization (EM)
iteration,

5

6 CHAPTER 1. INTRODUCTION

• ratio-reject.

The implementation is licensed under the GNU General Public License, version 3
[45] or later, with special exceptions allowing to link with the third-party optimizers
used.

1.2 Organization

In chapter 2, we will discuss the mathematical background for our algorithm.
We will give an introduction to the subject of optimization and the current state of
the art to give our work some context, and we will de�ne some important concepts
from data analysis and statistics which are central to our algorithm. In chapter
3, we will de�ne the exact model we operate on and describe our algorithm
in purely mathematical terms. In chapter 4, we will document our concrete im-
plementation, detailing the format of user input, the actual implementation of
the algorithm described in the previous chapter and the interfaces to third-party
libraries. In chapter 5, we will summarize the results obtained with our imple-
mentation, both in terms of speed and quality. Finally, chapter 6 will conclude
the thesis with an outlook on possible future improvements.

1.3 Acknowledgements

First of all, I would like to thank my advisor, Prof. Hermann Schichl, as well as the
head of our working group, the Computational Mathematics Group at the Faculty
of Mathematics of the University of Vienna, Prof. Arnold Neumaier, who have both
been of invaluable help both through their lecture courses which introduced me
into the subjects and through the hints they gave me. I would also like to thank Dr.
Arthur Flexer of the Institute for Medical Cybernetics and Arti�cial Intelligence
of the Medical University of Vienna, whose AI Methods of Data Analysis course
gave me further insights into the subject of data analysis. Thanks also go to
Stefan Vigerske, the author of the LaGO optimizer [41], whose function enclosure
method is at the base of our method to handle implicit equality constraints, and
to the authors of the third-party libraries DONLP2 [30], Ipopt [33], MUMPS [35]
and lp_solve [39] used in our implementation (see section 2.5). I would also
like to thank my student colleagues who regularly attended the seminar where we
exchanged progress reports and the occasional hints, especially Petra Grell from
whom I got the idea to write this thesis in English. Finally, I would like to thank
my parents who supported me throughout my studies.

Chapter 2

Mathematical Background

In this chapter, we will give some background on the mathematical context of our
algorithm and the methods it employs. In the �rst section, we give an overview of
optimization, presenting the central de�nitions and a summary of the prior work
done in the �eld. The next three sections give an introduction into the methods
from data analysis and statistics which are used extensively in our algorithm,
namely covariance models, outlier detection and cubic regression. The last section
lists the third-party libraries we employ and describes brie�y how they work.

2.1 Optimization Problems

This section aims at giving an overview about the context of this thesis. We will
start by giving some motivation and possible applications for optimization. Next,
we will provide the general de�nitions of a global and a local optimization problem.
Finally, we will present the most important existing optimization algorithms, �rst
for local optimization, then for the harder global case. The references for most
of this section were Prof. Schichl's Optimization [1] and Global Optimization [2]
lectures. For each subsection, we will provide consultable references where more
details can be found.

2.1.1 Motivation

Optimization aims at �nding the minimum or maximum of an objective function

subject to certain constraints. Optimization problems come up in a wide range
of applications. For example, wherever there is money to be made, there is an
optimization problem: maximize the pro�t. Other domains where optimization
problems come up include:

• prediction of chemical reactions,

7

8 CHAPTER 2. MATHEMATICAL BACKGROUND

• protein folding,

• logistics,

• road construction,

• scheduling problems, e.g. train schedules or class schedules,

• power station control,

• robotics,

• graph structure problems, e.g. the maximum clique problem,

• packing problems, e.g. the knapsack problem,

• nonlinear least-squares problems, e.g. optimal placement of microphones in
an orchestra.

Constraint satisfaction problems can be interpreted as a special case of optimiza-
tion problems where the objective function is constant.

2.1.2 De�nitions

An optimization problem is a problem of the form

min f(x)
s.t. x ∈ G,

where f is a function from a superset U of G to R called the objective function.
(Theoretically, any totally-ordered set can be considered for the range of the ob-
jective function, but this is rarely useful in practice and most algorithms only
work on real-valued objective functions. Therefore, only the real-valued case will
be considered.) The set G is called the feasible set, any point x ∈ G is called a
feasible point, any x /∈ G is called an infeasible point. We will assume G ⊆ U ⊆ Rn.
Further assumptions on G and U will be made depending on the algorithm being
considered. Usually, G will be given by inequalities

Fl ≤ F (x) ≤ Fu

(where Fl, Fu, and F (x) are vectors and the inequalities are componentwise vector
inequalities), the constraints. Many algorithms also assume that U = Rn, i.e. that
the function is also de�ned (evaluable) at infeasible points.

2.1. OPTIMIZATION PROBLEMS 9

Strictly speaking, the de�nition above only de�nes minimization problems, an
optimization problem can also be a maximization problem

max f(x)
s.t. x ∈ G.

However, this can be trivially reformulated as

min −f(x)
s.t. x ∈ G.

A global solution of the optimization problem

min f(x)
s.t. x ∈ G

is a feasible point x̂ such that f(x) ≥ f(x̂) ∀x ∈ G. Global optimization means
searching for such a global solution. This type of solution is easy to de�ne, but
unfortunately it is hard to �nd. Therefore, another type of solution is often con-
sidered: a local solution of the above optimization problem is a feasible point x̂
such that f(x) ≥ f(x̂) for all x in a neighborhood of x̂ in G.

Obviously, any global solution is also a local solution. Therefore, �nding a local
solution is easier than �nding a global one. Thus, we will �rst consider algorithms
for local optimization, and only then for the global case.

These and more de�nitions can be found in most texts about optimization, e.g.
[3].

2.1.3 Local Optimization Algorithms

Local optimization algorithms mostly di�er in the way they handle constraints.
Therefore, we �rst give an overview of unconstrained optimization techniques,
which are shared by most local optimization algorithms in practical use (as well as
some global ones). Next, we describe the most common approaches used to deal
with constraints:

• penalty and barrier approaches, which work by modifying the objective func-
tion to take the constraints into account,

• �lter methods, which treat a constrained optimization problem as concurrent
optimization of the objective and the constraint violation and solve that using
techniques from Pareto optimization theory,

• sequential quadratic programming (SQP) techniques, which generate a se-
quence of quadratic approximations for the constraints.

10 CHAPTER 2. MATHEMATICAL BACKGROUND

As those approaches are independent of the unconstrained optimization algorithm
in use, they can also be used unmodi�ed for global optimization problems, which
are solved with di�erent classes of algorithms.

Unconstrained Optimization

Unconstrained local optimization algorithms work by constructing a sequence of
iterates xk which, given certain conditions, converges to a local optimum. A very
common and e�ective way to construct such iterates is line search. In each step,
a line search method starts from the iterate xk and picks

• a search direction sk (or a nonlinear search curve sk(α) with sk(0) = 0) and
subsequently

• a step length αk ∈ R+ along the search direction.

The next iterate xk+1 is then given by xk + αksk (or xk + sk(αk) in the general
case). Concrete line search algorithms di�er by the methods they employ for each
of these steps.

Most practical methods used to �nd the search direction are based on the
Newton direction −H−1g where g is the gradient of the objective function and
H its Hessian at xk, which minimizes the quadratic Taylor approximation of the
function around xk (assuming the Hessian is positive de�nite). Newton methods

use the exact Hessian, Quasi-Newton methods replace H with an approximation
B which satis�es the Quasi-Newton equation g(x1)− g(x0) = B (x1 − x0).

The method used to �nd the step length is called the line search technique.
The ideal line search is exact line search, which chooses αk such that the objective
at xk+1 is globally minimal along the search direction (or curve). Practical line
search techniques are approximations for this, requiring much less e�ort.

Unconstrained local optimization is described in much higher detail in [4].

Penalty and Barrier Methods

Both penalty and barrier methods handle constraints by replacing the objective
function f with a function fσ taking the constraints into account through an added
term. Concretely, fσ(x) = f(x) + pσ(x) where σ ∈ R+ and the penalty term or
barrier term pσ(x) is given by the constraints and the parameter σ.

Penalty methods use a penalty term pσ(x) = σϕ(cv(x)) where cv(x) is the
constraint violation cv(x) =

∑
i cvi(x) where

cvi(x) =

Fi(x)− Fiu, Fi(x) > Fiu

Fil − F (x), Fi(x) < Fil

0, else

2.1. OPTIMIZATION PROBLEMS 11

and ϕ(λ) is a monotone increasing function of λ with ϕ(0) = 0 (i.e. pσ(x) = 0
for all feasible points x). In theory, the larger σ is taken, the better the approxi-
mation, but in practice this leads to sti�, ill-conditioned problems, so σ is usually
increased adaptively. Penalty methods can be used for both equality and inequality
constraints.

Barrier methods start from an interior point, i.e. a point satisfying the strict
inequality Fil < Fi(x) < Fiu for each constraint Fi, and force the iterates to stay
inside the feasible domain by adding a barrier term pσ(x) which tends to in�nity
as Fi(x) nears the borders Fil or Fiu. pσ is de�ned such that it becomes steeper
with higher σ, and again σ is usually increased adaptively. Equality constraints
cannot be treated this way, they have to be considered separately, for example
by variable substitution. The substitution can be done numerically by solving a
nonlinear system of equations in each step; the resulting method is called a reduced
gradient method.

A more detailed description of penalty and barrier methods, some common
choices for penalty and barrier functions and their theoretical background can be
found in [5].

Filter Methods

The main idea which leads to �lter methods is the following: instead of always
starting from the last iterate xi to search for a new xi+1, we want to start from
the �best� xj in {x1, . . . , xi}. The problem is that it is not obvious what the �best�
xj actually is. In the unconstrained case, it is obvious: the best xj is the one with
the smallest objective value. Assuming monotone descent, this is actually always
xi. Once we introduce constraints, however, it is no longer obvious which xj is the
best, because we now have 2 parameters to consider: the objective function and
the constraint violation.

An obvious way to generalize the choice of a best point to the constrained
case is to use a penalty approach: the best xj is the one minimizing the penalty
function fσ. The weakness of this approach, however, is the arbitrary parameter
σ, which is very hard to choose in practice.

Filter methods [6, 7] thus eliminate this arbitrary parameter, instead consider-
ing the constrained optimization problem as the simultaneous optimization (Pareto
optimization) problem of minimizing both the objective function and the constraint
violation. This leads to a set of �best� points xj, the ones which are Pareto opti-

mal, i.e. those for which there is no xk with f(xk) ≤ f(xj) and cv(xk) < cv(xj) or
f(xk) < f(xj) and cv(xk) ≤ cv(xj). This xj is usually not unique. The individual
�lter methods di�er in the way a single xj is picked out of the set of Pareto-optimal
points.

12 CHAPTER 2. MATHEMATICAL BACKGROUND

Sequential Quadratic Programming (SQP)

Another way to deal with constraints is sequential quadratic programming (SQP). A
quadratic programming (QP) problem is an optimization problem with a quadratic
objective function and linear constraints. SQP methods replace the original prob-
lem by QP approximations which are recomputed at each iteration step.

Concretely, given the problem:

min f(x)
s.t. F (x) ≥ 0

Fi(x) = 0 ∀i ∈ E,

in each step, one searches for the s which minimizes

min 1
2
sT H(x, y)s + g(x)T s

s.t. J(x)s + F (x) = 0,

where g(x) is the gradient of the objective function f(x), J(x) is the Jacobian of
the constraint vector F (x) and H(x, y) is the Hessian of the Lagrangian L(x, y) =
f(x)−

∑
i∈E yiFi(x) with respect to x. [8, 9]

These QPs are then solved using standard line search techniques.

2.1.4 Global Optimization Algorithms

Global optimization is a harder problem than local optimization: it is obvious to
see that it cannot be easier because any global optimum is also a local optimum,
and in practice, it turns out to be strictly harder except in some special cases,
such as convex problems (for which a local optimum is automatically global). The
general case of global optimization has been proven NP-hard by reinterpreting the
maximum clique problem, a known NP-hard problem from graph theory, as a global
optimization problem [10]. More precisely, that problem is nonconvex quadratic,
so even global optimization of QPs is NP-hard in the general (nonconvex) case.

A multitude of algorithms has been developed to solve such problems e�ciently.
We will �rst give a classi�cation of the di�erent types of algorithms and then de-
scribe some of the most popular algorithms in use today, focusing on approaches
which can be used for optimization of black box functions with no gradients avail-
able.

Classi�cation

Global optimization algorithms are classi�ed [3] based on what type of convergence,
if any, can be proven:

2.1. OPTIMIZATION PROBLEMS 13

• Incomplete algorithms are based on clever heuristics, but have no provable
convergence properties, in particular, there is no guarantee of not getting
stuck in a local optimum, some do not even have the property to always �nd
a local optimum.

• Asymptotically complete algorithms converge to a global optimum with prob-
ability 1 when run in�nitely long (at least when using exact arithmetic), how-
ever at no �nite point in time, it is known how far from a global optimum it
is.

• Complete algorithms converge to a global optimum with certainty when run
in�nitely long and given exact arithmetic. Moreover, the algorithm knows
after �nite time that a global optimum has been found up to a given tolerance.
However, rounding errors are not accounted for.

• Rigorous algorithms �nd a global optimum up to a given tolerance with
certainty and in �nite time, even when subject to rounding errors, except
in degenerate or almost degenerate cases, in which the tolerances cannot be
met. They usually rely on interval methods, rounding mode settings and/or
rounding error control.

Unfortunately, rigorous enclosures are essentially a lost cause when dealing with
black box functions, therefore rigorous methods will not be considered in this
thesis.

Simulated Annealing

Simulated annealing algorithms [11, 12, 13] employ a heuristic based on the obser-
vation of the natural process of cristallization: a cristalline structure is one which
globally minimizes a certain potential. This global minimum can be obtained by
heating the material and slowly cooling it down.

Simulating this process leads to a heuristic based on a temperature parameter
T , which is slowly decreased as the algorithm runs. At each step:

• a new point xnew is computed using some heuristic,

• if f(xnew) < f(xcurr), xnew is accepted as the new xcurr,

• otherwise, acceptance depends on f(xnew)− f(xcurr) and the temperature T .

In the original simulated annealing algorithm, new points were generated pseudo-
randomly using uniformly distributed numbers, and the probability of accepting
an increase in function value was proportional to the Boltzmann distribution e−

K
T .

14 CHAPTER 2. MATHEMATICAL BACKGROUND

This leads to an asymptotically complete, but very slow heuristic. Practical sim-
ulated annealing algorithms often throw away asymptotical completeness to get
faster convergence on practical examples.

Unfortunately, empirical results show that simulated annealing has trouble
dealing with constraints other than bound constraints, convergence is much slower
in that case.

Genetic Algorithms

Genetic algorithms [14, 15, 16] are also inspired by natural processes: evolution
and natural selection. They begin with a set of N starting points, the population.
At each step:

• pN (p ∈]0, 1[) points are retained (selected), the others are killed. Points
with smaller function value have a higher probability of survival.

• The population is �lled up by the reproduction of the remaining points. In
order to create a new point:

� two points are combined through a problem-dependent crossover pro-
cedure and/or

� a random mutation is applied.

Genetic algorithms work well in practice, but they have no provable completeness
properties.

Ant Colony

Another class of algorithms inspired by Nature is ant colony algorithms. [17, 18]
Those algorithms mimic the behavior of a colony of ants trying to �nd the shortest
path around an obstacle. As they walk, ants deposit pheromones, leaving a scent
trail behind. When given a choice between turning left or right, an ant will pick one
of the options randomly, however it will pick a direction with a higher concentration
of pheromones with a higher probability. As the obstacle is being crossed from both
sides, the shorter path will get �lled with pheromones faster (because ants from
the other side will start reaching it sooner), so more ants will prefer the shorter
path, starting a positive feedback loop. Ant colony algorithms mimic this process
to solve optimization problems such as the traveling salesman problem.

DIRECT

Unlike the above Nature-inspired methods, the DIRECT algorithm [19] is based on
mathematical observations. It is a complete algorithm using no global information.

2.2. COVARIANCE MODELS 15

Therefore, it has to explore the entire search space. More precisely, it has to
produce a sequence of points which is dense in the feasible domain, as proven by
Törn and �ilinskas in [20]. DIRECT starts from a box (i.e. bound constraints)
and constructs such a sequence by repeatedly splitting the box, the iterates are
taken as the midpoints of the produced boxes. Of course, dumb exploration of
all areas at the same speed would be very ine�cient, therefore a tradeo� has to
be made between local search around good points and guaranteeing completeness.
DIRECT handles this problem by labeling its boxes with both their volume v and
the objective function value f at the midpoint and only splitting the boxes which
aren't dominated by another box, where (v, f) dominates (v′, f ′) if v > v′ and
f < f ′. In other words, it only splits a box if there isn't a larger box with a
smaller objective function value to split �rst.

There exist improved algorithms based on this idea, such as multilevel coor-
dinate search [21], which only splits boxes up to a certain level, based on the
observation that it's pointless to search around a local optimum up to a very small
box when the tolerances are already met by the currently-achieved level.

Limitations

The biggest limitation of all the above algorithms is that they get into trouble
as soon as we have not only a black box objective function, but also black box
constraints. Most of them cannot even handle analytic constraints other than
bound constraints in an e�cient way. And none of them even tries to handle black
box equality constraints. This thesis develops an algorithm designed to tackle this
problem.

2.2 Covariance Models

2.2.1 Motivation

Consider the problem where we have a set, or cloud, of data points in a given
space (in this thesis, we will consider only the �nite real vector spaces Rm as our
data point spaces) and want to �nd structure in the data. Data analysis aims
at �nding such structure in data. Of course, the concept of structure is a vague,
abstract concept. Therefore, there exists a multitude of data analysis methods,
each considering a di�erent form of structure.

In this section, the structure we want to �nd is:

• How far are the points apart from each other?

• What are the directions in which most of the variation happens?

16 CHAPTER 2. MATHEMATICAL BACKGROUND

Moreover, we are not after local information such as the pairwise distances between
individual points, but after a global structure. The natural solution to this problem
is given by the concept of covariance models. The references for this section were
Prof. Neumaier's Mathematical Methods of Data Analysis lecture [22] for the �rst
four subsections and Univ.-Ass. Flexer's AI Methods of Data Analysis lecture [23]
for the last two ones. As for the previous section, in each subsection, consultable
references providing more details will be given.

2.2.2 Covariance Ellipsoids

Covariance Matrix

Let (xi)
n
i=1 be a sequence of vectors in Rm. Then the mean x̄ of xi is de�ned by

x̄ =

∑n
i=1 xi

n

and the covariance matrix Cx of xi by

Cx =

∑n
i=1 (xi − x̄) (xi − x̄)T

n
.

The covariance matrix will be denoted by just C if it is obvious what sequence
the covariances are being taken of. C is obviously symmetric as a tensor product
scaled by a constant. It is also positive semide�nite because

∀y ∈ Rm : yT Cy =
1

n

n∑
i=1

yT (xi − x̄) (xi − x̄)T y =
1

n

n∑
i=1

(
yT (xi − x̄)

)2 ≥ 0.

Weighted Covariance Matrix

Let (xi)
n
i=1 be a sequence of vectors in Rm and (wi)

n
i=1 be a sequence in R+. Then

the weighted mean x̄ of xi with weights wi is de�ned by

x̄ =

∑n
i=1 wixi∑n
i=1 wi

and the weighted covariance matrix Cx of xi with weights wi by

Cx =

∑n
i=1 wi (xi − x̄) (xi − x̄)T∑n

i=1 wi

.

This matrix has the same properties as the unweighted covariance matrix, in par-
ticular, it is also symmetric and positive semide�nite. Therefore, it can be used
wherever an unweighted covariance matrix can. Setting all wi to 1 yields the
unweighted mean and covariance matrix.

2.2. COVARIANCE MODELS 17

Covariance Ellipsoids

Let Cx be an invertible covariance matrix. (This implies Cx is positive de�nite,
because it is always positive semide�nite.) Then all inequalities of the form

(x− x̄)T C−1
x (x− x̄) ≤ ε, x ∈ Rm

for ε ∈ R+ form ellipsoids. These ellipsoids are called covariance ellipsoids (or
error ellipsoids) for xi and the error ε.

The covariance ellipsoid is centered around x̄, and it is more elongated in those
directions in which xi varies the most. For example, assume C is diagonal, i.e.
the covariances Cij, i 6= j all vanish. Then the ellipsoid's axes are parallel to the
coordinate axes, and their lengths are the scaled variances Cii

√
ε, thus the ellipsoid

is more elongated for those i where the variance Cii is high. In the general case,
the axes of the ellipsoid are the eigenvalues of C (which are also its singular values
because C is always positive semide�nite), which correspond to the directions
spanned by the linear combinations of xi which vary the most.

A detailed description of covariance matrices and error ellipsoids can be found
in [24].

2.2.3 Nonlinear Covariance Models

In the algorithm, the covariance models will be used to approximate functions lo-
cally. Unfortunately, ellipsoids are bad approximations for functions, even locally,
because the high symmetry of an ellipsoid makes it impossible for it to follow a
curve without also following symmetrical curves with opposite curvature. Thus,
better approximations are needed. The solution to this problem is to introduce
nonlinear covariance models.

Let (xi)
n
i=1 and (yi)

n
i=1 be sequences of vectors in Rm and Rp, respectively. Then

let zi be the vector formed by the columns of the upper half of the symmetric matrix
xix

T
i :

zi = (xi11 xi12 xi22 xi13 xi23 xi33 . . . xi1m . . . ximm)T ,

where xijk = xijxik, i.e. the product of the jth and kth component of xi, and let

Xi :=

xi

zi

yi

 .

The nonlinear covariance model(
X − X̄

)T
C−1

X

(
X − X̄

)
≤ ε, X ∈ Rm+

m(m+1)
2

+p

18 CHAPTER 2. MATHEMATICAL BACKGROUND

then produces better local approximations for a function y = f(x) than the ellip-
soids produced by the linear model, because f can be locally approximated by a
quadratic, and the nonlinear models de�ned above can follow the curvature of a
quadratic, due to the quadratic terms in xi introduced by the model.

Proof: Consider the quadratic function y = Az+Bx+c where x ∈ Rm, y ∈ Rp

and z formed from xxT as above are variables and A ∈ Rp×m(m+1)
2 , B ∈ Rp×m and

c ∈ Rp are constant. Let I be the identity matrix. The equation can be rewritten
as

Az + Bx− (y − c) = 0

⇔ (Az + Bx− (y − c))T (Az + Bx− (y − c)) ≤ 0

⇔ zT AT Az + xT BT Bx + (y − c)T (y − c) + zT AT Bx + xT BT Az

−zT AT (y − c)− (y − c)T Az − xT BT (y − c)− (y − c)T Bx ≤ 0

⇔

x
z
y

−

0
0
c

T BT B BT A −BT

AT B AT A −AT

−B −A I

 x
z
y

−

0
0
c

 ≤ 0

which is a degenerate covariance ellipsoid for the above nonlinear covariance model.
The ellipsoid is degenerate because the matrix is singular and can thus not be the
inverse of a covariance matrix, and the right hand side ε is 0. However, it can be
approximated as closely as wanted by a non-degenerate covariance model because
the set of regular matrices of a given dimension is dense in the set of square matrices
of the same dimension.

2.2.4 Gaussian Mixture Models

Gaussian mixture models [25] are approximations of a probability density by a
sum of Gaussian bell curves. They are de�ned by the mixture distribution

p(x) =
M∑

j=1

P (j)p(x|j), x ∈ RN ,

where the mixing priors 0 ≤ P (j) ≤ 1 for each j are �xed and sum up to 1, and
the class-conditional densities p(x|j) are given by the multi-dimensional Gaussian
distribution

p(x|j) =
e−

(x−µ)T C−1(x−µ)
2

(2π)
N
2

√
det(C)

,

where µ ∈ RN is called the mean of the Gaussian distribution and C ∈ RN×N

its covariance matrix. If C is symmetric positive de�nite, then
√

det(C) is the
determinant of the Cholesky factor of C.

2.2. COVARIANCE MODELS 19

The gradient of the multi-dimensional Gaussian distribution is given by

g(x|j) = −e−
(x−µ)T C−1(x−µ)

2 C−1 (x− µ)

(2π)
N
2

√
det(C)

= −p(x|j)C−1 (x− µ)

and the Hessian by

H(x|j) = −p(x|j)C−1 − g(x|j) (C−1 (x− µ))
T

= −p(x|j)C−1 + p(x|j)C−1 (x− µ) (C−1 (x− µ))
T

= p(x|j)
(
C−1 (x− µ) (C−1 (x− µ))

T − C−1
)

.

In addition to approximating a density, Gaussian mixture models also con-
tain clustering information: every class-conditional density represents a cluster in
the data. If the densities show high overlap, the data points don't form clearly-
separated clusters.

2.2.5 Expectation-Maximization Iteration

For Gaussian mixture models to be useful, a method to compute the parameters
P (j), µj and Cj such that the resulting Gaussian mixture model approximates
the density of the points (xi)

n
i=1 is needed. In this section, an iterative maximum-

likelihood algorithm will be described.
The likelihood L of the mixture model is de�ned as the sum of the probabilities

given by the model to each of the points:

L =
n∑

i=1

p(xi).

According to Bayes's theorem, the posteriors P (j|x) are given by

P (j|x) =
p(x|j)P (j)

p(x)
.

The parameters at the maximum of L satisfy the following optimality conditions:

µj =
Pn

i=1 P (j|xi)xiPn
i=1 P (j|xi)

Cj =
Pn

i=1 P (j|xi)(xi−µj)(xi−µj)
TPn

i=1 P (j|xi)

P (j) =
Pn

i=1 P (j|xi)

n
.

This assertion is proven for a more general case in [26].

20 CHAPTER 2. MATHEMATICAL BACKGROUND

Unfortunately, these equations have unknowns on both sides. However, they
can be interpreted as �xed points of the following iteration:

µnew
j =

Pn
i=1 P old(j|xi)xiPn
i=1 P old(j|xi)

Cnew
j =

Pn
i=1 P old(j|xi)(xi−µnew

j)(xi−µnew
j)

TPn
i=1 P old(j|xi)

P new(j) =
Pn

i=1 P old(j|xi)

n
.

This leads to the following iterative algorithm:

1. Start with a simple guess for the distribution p(x).

2. Repeat a su�cient number of times:

2.1. E Step: Compute (estimate) the posteriors P old(j|xi) from the param-
eters µold

j , Cold
j and P old(j).

2.2. M Step: Compute the new parameters µnew
j , Cnew

j and P new(j) (maxi-
mize the likelihood) from the posteriors P old(j|xi).

If this iteration converges, the result is a �xed point of the function above, i.e. a
solution to the equation system above and thus a critical point of the likelihood L
of the Gaussian mixture model.

This algorithm is called the Expectation-Maximization Iteration [26].

2.3 Ratio-Reject

Another method from data analysis used in our algorithm is ratio-reject [27] (the
term ratio-reject was coined in [28]), which performs outlier rejection, i.e. detects
points in a data set which are too far from the cluster the data set is clustered
around.

Let X be a �nite set of data points in Rn. Let d be a distance in Rn and, for a
�nite subset Y of Rn, let NN Y (x) be the nearest neighbor to x in Y , i.e. the point
in Y \ x which minimizes d(x, y). Let

ρ(x) =
d(x,NN X(x))

d(NN X(x),NN X\x(NN X(x)))
, x ∈ Rn.

Then, for a given threshold s ∈ R, ratio-reject considers as outliers in X all points
x ∈ X which satisfy

ρ(x) > ρ̄(X) + s σρ(X),

where ρ̄(X) is the mean and σρ(X) the standard deviation of all ρ(x) for x ∈ X.
[23]

2.4. CUBIC REGRESSION 21

2.4 Cubic Regression

Let (xi, yi)
n
i=1 be a sequence in R2. The cubic regression for this sequence is de�ned

as the cubic least-squares polynomial

f(x) = ax3 + bx2 + cx + d,

where the parameters a, b, c and d minimize the error

E =
n∑

i=1

(yi − f(xi))
2 .

By inserting the de�nition of f(x) and expanding, we get

E =
∑n

i=1 (yi − (ax3
i + bx2

i + cxi + d))
2

=
∑n

i=1

(
y2

i − yi (ax3
i + bx2

i + cxi + d) + (ax3
i + bx2

i + cxi + d)
2
)

=
∑n

i=1 (y2
i − 2x3

i yia− 2x2
i yib− 2xiyic− 2yid + x6

i a
2 + 2x5

i ab
+2x4

i ac + 2x3
i ad + x4

i b
2 + 2x3

i bc + 2x2
i bd + x2

i c
2 + 2xicd + d2)

=
∑n

i=1 (y2
i)− 2

∑n
i=1 (x3

i yi) a− 2
∑n

i=1 (x2
i yi) b− 2

∑n
i=1 (xiyi) c

−2
∑n

i=1 (yi) d +
∑n

i=1 (x6
i) a2 + 2

∑n
i=1 (x5

i) ab + 2
∑n

i=1 (x4
i) ac

+2
∑n

i=1 (x3
i) ad +

∑n
i=1 (x4

i) b2 + 2
∑n

i=1 (x3
i) bc + 2

∑n
i=1 (x2

i) bd
+

∑n
i=1 (x2

i) c2 + 2
∑n

i=1 (xi) cd + nd2.

The �rst-order optimality conditions grad(E) = 0 for E are thus (after simplifying
away the common factor 2 and bringing the constant terms to the other side):∑n

i=1 (x6
i) a +

∑n
i=1 (x5

i) b +
∑n

i=1 (x4
i) c +

∑n
i=1 (x3

i) d =
∑n

i=1 (x3
i yi) ,∑n

i=1 (x5
i) a +

∑n
i=1 (x4

i) b +
∑n

i=1 (x3
i) c +

∑n
i=1 (x2

i) d =
∑n

i=1 (x2
i yi) ,∑n

i=1 (x4
i) a +

∑n
i=1 (x3

i) b +
∑n

i=1 (x2
i) c +

∑n
i=1 (xi) d =

∑n
i=1 (xiyi) ,∑n

i=1 (x3
i) a +

∑n
i=1 (x2

i) b +
∑n

i=1 (xi) c + nd =
∑n

i=1 (yi) ,

[29]. For f(0) = d, Cramer's rule yields the expression

d =

∣∣∣∣∣∣∣∣
∑n

i=1 x6
i

∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i yi∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i yi∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xiyi∑n

i=1 x3
i

∑n
i=1 x2

i

∑n
i=1 xi

∑n
i=1 yi

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑n

i=1 x6
i

∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xi∑n

i=1 x3
i

∑n
i=1 x2

i

∑n
i=1 xi n

∣∣∣∣∣∣∣∣
,

22 CHAPTER 2. MATHEMATICAL BACKGROUND

which can be written as

d =
d1

∑n
i=1 yi − d2

∑n
i=1 xiyi + d3

∑n
i=1 x2

i yi − d4

∑n
i=1 x3

i yi

d1n− d2

∑n
i=1 xi + d3

∑n
i=1 x2

i − d4

∑n
i=1 x3

i

,

where

d1 =

∣∣∣∣∣∣
∑n

i=1 x6
i

∑n
i=1 x5

i

∑n
i=1 x4

i∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i

∣∣∣∣∣∣ ,

d2 =

∣∣∣∣∣∣
∑n

i=1 x6
i

∑n
i=1 x5

i

∑n
i=1 x4

i∑n
i=1 x5

i

∑n
i=1 x4

i

∑n
i=1 x3

i∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xi

∣∣∣∣∣∣ ,

d3 =

∣∣∣∣∣∣
∑n

i=1 x6
i

∑n
i=1 x5

i

∑n
i=1 x4

i∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xi

∣∣∣∣∣∣ ,

d4 =

∣∣∣∣∣∣
∑n

i=1 x5
i

∑n
i=1 x4

i

∑n
i=1 x3

i∑n
i=1 x4

i

∑n
i=1 x3

i

∑n
i=1 x2

i∑n
i=1 x3

i

∑n
i=1 x2

i

∑n
i=1 xi

∣∣∣∣∣∣ .

In this expression, the denominator and the subdeterminants d1, d2, d3 and d4 do
not depend on the yi. This can be used to extrapolate a vector-valued function
F : R → Rk towards zero componentwise. Neither the denominator nor the
subdeterminants have to be recomputed for each component.

2.5 Third-party Libraries

2.5.1 Local Nonlinear Optimization

Each step of our algorithm computes a model which needs to be locally optimized.
We use a third-party optimization library for this purpose. One of two optimization
packages can be used.

DONLP2

The �rst supported local optimizer is Peter Spellucci's DONLP2 [30, 31, 32]. We
use the C version with dynamic memory allocation (donlp2_intv_dyn). In our
experience, this is the faster solver for small problems.

2.5. THIRD-PARTY LIBRARIES 23

DONLP2 solves problems of the form

min f(x)
s.t. x ∈ Rn

xl ≤ x ≤ xu

bl ≤ Ax ≤ bu

cl ≤ c(x) ≤ cu

using an SQP method: it constructs a sequence of equality-constrained quadratic
approximations, which are optimized using quadratic programming techniques.
DONLP2 uses an active set method, a purely local error criterion for the Kuhn-
Tucker conditions is used to estimate the active set. It requires function values
and gradients as input, the Hessian of the Lagrangian is estimated using a slightly
modi�ed version of the Pantoja-Mayne update. It uses variable dual scaling and
an improved Armijo-type stepsize algorithm. Bounds on the variables are treated
in a gradient-projection like fashion. More details can be found in the included
documentation and in Spellucci's papers [31] and [32].

Ipopt and MUMPS

Alternatively, the Ipopt [33, 34] optimizer from the COIN project can be used.
Ipopt needs a solver for sparse symmetric linear systems of equations. In our
tests, we used MUMPS [35, 36, 37, 38] in sequential mode.

Ipopt (Interior Point OPTimizer) solves problems of the form

min f(x)
s.t. x ∈ Rn

xl ≤ x ≤ xu

cl ≤ c(x) ≤ cu

using an interior point line search �lter method. Ipopt uses a sparse matrix repre-
sentation for Jacobians and Hessians. Linear constraints are not handled specially,
linearity is only considered in the case where it leads to zeros in the sparsity struc-
ture of the Hessian of the Lagrangian. A primal-dual barrier approach is used.
More details can be found in [34].

MUMPS (MUltifrontal Massively Parallel Solver) solves linear equations of the
form Ax = b where A is a square sparse matrix. A can be either unsymmetric,
symmetric positive de�nite or general symmetric. The systems which Ipopt solves
are general symmetric. MUMPS uses a multifrontal direct method to factor the
matrix into LU or LDLT form (symmetric matrices use the latter). The algorithm
is designed to be highly parallelizable, and MUMPS can do its computations se-
quentially or in parallel. In our tests, the sequential version was used. The details
can be found in the papers [36, 37, 38].

24 CHAPTER 2. MATHEMATICAL BACKGROUND

2.5.2 Linear Programming: lp_solve

To compute approximations of equality constraints, linear programming is used.
We used the lp_solve [39] library, which solves linear programs using the revised
simplex method [40]. lp_solve also supports mixed-integer linear programming,
but we do not use this feature.

Chapter 3

Model and Algorithm

This chapter gives a detailed mathematical description of our algorithm. We start
by describing the model formulation we accept as input. In a second section, we
then present the algorithm we use to solve the model.

3.1 Model

Our algorithm solves optimization problems of the form

min cT

(
x
y

)
s.t. y = F1(x)

F2(x) = 0
xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

where x and y are variable vectors, c, xl, xu, Fl, and Fu are constant vectors (the
bounds can be in�nite), inequalities are component-wise, and

F (x) =

(
F1(x)
F2(x)

)
is assumed to be an expensive, black box function. By this we mean that
no closed-form algebraic expression for the function is known, no gradients are
available, and the bulk of the runtime of the algorithm on a real-world problem is
expected to be given by the function evaluations. These assumptions are central
to the design of the algorithm. We perform an incomplete global optimization
on this model. As explained in chapter 2 (Mathematical Background), this means
we attempt to �nd a global solution for our model, but are unable to guarantee
globality. In fact, we cannot even guarantee always �nding a local optimum, due

25

26 CHAPTER 3. MODEL AND ALGORITHM

to the lack of gradients and any sort of global information. Despite this lack of
guarantees, the algorithm performs well in practice. The entire chapter 5 will be
dedicated to practical results.

The above form was chosen very carefully. For one, all black box optimization
problems can be represented this way. For example, consider a problem with a
black box objective function F and bound constraints:

min F (x)
s.t. xl ≤ x ≤ xu

This can be trivially rewritten as:

min
(
0 1

) (
x
y

)
s.t. y = F (x)

xl ≤ x ≤ xu

−∞ ≤ y ≤ ∞

which is of the required form. And secondly, simpler formulations we considered
lose too much information which is essential for the performance of the algorithm.

The formulation we �rst considered was

min cT x
s.t. y = F (x)

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

which in theory can also represent all black box optimization problems. However,
we found two �aws with this formulation in practice. The �rst �aw is that this
formulation needlessly blows up the search space when black box (or even nonlinear
algebraic) objective functions are encountered. Again, consider the problem with
black box objective function F and bound constraints. The proposed formulation
would turn that problem into

min
(
0 1

) (
x1

x2

)
s.t. y = F (x1)− x2

xl ≤ x1 ≤ xu

Fl ≤ x2 ≤ Fu

0 ≤ y ≤ 0.

which is highly ine�cient because we now have an extra dimension x2 to search.
Luckily, we found that it required almost no extra e�ort to handle the more general

3.2. ALGORITHM 27

formulation

min cT

(
x
y

)
s.t. y = F (x)

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

(compared to the original formulation, we only added the y term to our linear
objective function) which eliminates the spurious variable.

Unfortunately, these considerations made a second �aw apparent: even with
the revised formulation, only explicit equality constraints were accounted for,
implicit equality constraints could still not be handled e�ciently. For example,
consider the problem

min cT x
s.t. F (x) = 0

xl ≤ x ≤ xu.

Even with our revised formulation, the best obtainable rewrite is

min cT x
s.t. y = F (x)

xl ≤ x ≤ xu

0 ≤ y ≤ 0.

which is still suboptimal. In fact, while this might not be immediately obvious,
there is still an excess x dimension here: assuming a well-behaved F , only a lower-
dimensional submanifold of the search space of x actually contains feasible points.
This is a hard problem to deal with, and most (if not all) existing black box
optimization algorithms choke on it. One theoretically possible solution would
be to lower the dimension of the search space by numerically solving the implicit
constraint for the excess variables, however this would mean solving a nonlinear
system of equations for each new point to consider, requiring prohibitively many
function evaluations. Thus, this is not an option in practice. Instead, we keep
implicit equality constraints F2(x) = 0 separate in our problem formulation and
handle them in a special way aiming at reducing the search space. Section 3.2.5 will
be dedicated to this problem. However, even with this method, implicit equality
constraints cannot be handled as e�ciently as explicit ones, therefore it is still
useful to take advantage of explicit formulations where they exist.

3.2 Algorithm

This section proposes an algorithm to solve the above model. First, we give a
rough overview of the algorithm, then we detail each step. We start by describing

28 CHAPTER 3. MODEL AND ALGORITHM

our method for starting point generation, then the local search technique, then our
global search method which looks for unexplored regions, and �nally we present
a way to deal with implicit equality constraints in the global search. We will go
into depth over the mathematical description of the algorithm, we will however
leave the details of the concrete implementation for the next chapter. We will
also motivate our decisions by mentioning some alternative approaches we tried
without success.

3.2.1 Overview

The outline of our algorithm is the following:

1. If we do not have enough starting points, generate some.

2. While the maximum number of function evaluations is not reached,

• for an even point (local search):

(a) pick a �best� point using a Pareto �lter method (see section 2.1.3),
(b) compute a regularized weighted nonlinear covariance model (see

section 2.2.2) around the point,
(c) optimize the model using a third-party local optimizer;

• for an odd point (global search):

(a) compute a Gaussian mixture model (see section 2.2.4) approximat-
ing the point density,

(b) optimize the model (minimize the density, in order to search in
unexplored regions) using a third-party local optimizer.

3. If we have implicit equality constraints, try extrapolating a feasible point by:

(a) picking the points which are Pareto-optimal (within the set of computed
points) for the simultaneous minimization of the objective f and the
constraint violation cv,

(b) throwing out those which are either already feasible to the desired tol-
erance (cv too small) or too far from feasibility (cv too large),

(c) throwing out possible outliers using ratio-reject (see section 2.3),

(d) using cubic regression (see section 2.4) to extrapolate cv to 0 from the
remaining points (which are assumed to be a good approximation for
the Pareto front, i.e. the set of theoretically Pareto-optimal points),

(e) computing the actual constraint violation to verify actual feasibility.

3.2. ALGORITHM 29

The global search ignores inequality constraints, i.e. the bounds Fl and Fu for the
explicit equality constraints, by design, because we only have local information for
the constraints, so we can't reliably tell which points are feasible and which aren't,
and in addition evaluating at infeasible points can give us information important
to �nd further feasible regions. (The explicit equality constraints themselves are ir-
relevant because the global search only searches in the x coordinates.) For implicit
equality constraints however, it has proven impractical to completely ignore them
and blindly search everywhere, therefore we approximate them with quadratics,
and actually optimize the GMM twice: �rst without the equality constraints, then,
using the result from this optimization as a starting point, again with the approx-
imations for the constraints. (Optimizing the model directly with the constraints
from a generic starting point has proven too hard for the local optimizers, thus
the two-stage approach.) Only the result with the constraints is retained.

3.2.2 Starting Point Generation

To generate starting points, we use a heuristic suggested by Prof. Neumaier. Let
N be the total number of starting points to generate. If we already have at least
N user-provided starting points, we can skip this step. Otherwise, let
m be the dimension of the points we want to generate, i.e. we want to
construct x1, . . . , xN ∈ Rm. We construct a grid of (2N)m points
x[1, . . . , 1], . . . , x[2N, . . . , 2N], equidistant along each dimension, such that
x[i1, . . . , ij−1, 1, ij+1, . . . , im]j = xlj and x[i1, . . . , ij−1, 2N, ij+1, . . . , im]j = xuj.
(Note that this construction is purely theoretical, in practice we will not compute
the coordinates of these exponentially many points!) We then proceed to �ll this
grid semi-randomly, but taking care not to generate more than one point with a
given xj coordinate, and preferring points farther away from existing ones to
closer points. This heuristic is designed to prevent the formation of random
clusters of starting points, with other areas remaining unexplored.

The way we obtain such a �lling is:

1. If we are given starting points by the user, we round these starting points
to the closest points on the grid (just for the purpose of the starting point
generation step; later in the algorithm, the actual user-provided points will
be used), and proceed as if these points had been generated by the automated
heuristic.

2. For each dimension j = 1, . . . ,m, we pick an index ij which has not been used
yet. Given that there are 2N total possibilities for ij and only N starting
points are to be generated, there are always at least N +1 such possibilities.
Each unused ij is given the same probability. The resulting point is the point
x[i1, . . . , im] on the grid.

30 CHAPTER 3. MODEL AND ALGORITHM

3. We repeat the above procedure for a total of 10 points, then retain the one
the farthest away from the existing points, i.e. with the largest euclidean
distance to the closest existing point. (If there are several points with the
same distance to existing points, any of them can be picked.) The other 9
points generated in this step are discarded.

4. We repeat the above two steps until we have N retained points.

It shall be noted that the rounded points from step 1 might not have been valid for
automated generation, in particular there might be several points with the same
jth index ij. However, this doesn't impact the algorithm in any way, and therefore
we do not attempt to �correct� user-provided starting points.

3.2.3 Local Search

Our local search starts at a previously-found point, constructs a local surrogate
model approximating the black box optimization problem around the point, then
optimizes that problem using a third-party local optimizer.

Choice of Best Point

The point to start the local search at is picked using a Pareto �lter method as
described in section 2.1.3. Unfortunately, in the presence of constraints, there is
(in general) no one best point, as there is both the objective function value and
the constraint violation to take into account. We �rst tried to de�ne the best point
(at which the local search is to be started) using a penalty approach: we de�ned
the best point as the point which minimizes

p(x) = cT

(
x
y

)
+ Ncv1(x) + κ(N)‖F2(x)‖1

where

cv1(x) =
∑

xi<xli

(xli − xi) +
∑

xi>xui

(xi − xui) +
∑

yi<Fli

(Fli − yi) +
∑

yi>Fui

(yi − Fui) ,

κ(N) =

√

N
18

, N < 18
N
18

, 18 ≤ N < 77
N
√

N
158

, N ≥ 77

and N is the number of already-evaluated points (so the penalty increases adap-
tively as the algorithms proceeds). Unfortunately, we found that this penalty
function was very sensitive to the parameters. In particular, the coe�cient κ(N)

3.2. ALGORITHM 31

for the last term (the violation of the implicit equality constraints) required so
much tweaking to get one test case to converge and was so sensitive to very small
parameter changes that we found it impossible to generalize this approach in any
meaningful way. Therefore, a �lter approach was picked instead.

As in the general Pareto �lter method, our best point is a point from the set P
of xj for which there is no xk with cT

(
xk

yk

)
≤ cT

(
xj

yj

)
and e(xk) < e(xj) or cT

(
xk

yk

)
<

cT
(

xj

yj

)
and e(xk) ≤ e(xj). For e(x), we did not pick the raw constraint violation

cv(x) = cv1(x)+‖F2(x)‖1, but the weighted term e(x) = Ncv1(x)+κ(N)‖F2(x)‖1,
though we do not expect this to make a lot of di�erence in practice. We then pick
a �best� point from P using the following recipe:

• If the most recent point xr in P has never been used as the starting point
for a local search, we pick it with a probability of 1− 1

|P | .

• Otherwise, i.e. with a probability of 1
|P | if xr was never used and always if

it was, we pick a random point out of P (which can also be xr) with equal
probabilities (i.e. each point is picked with probability 1

|P |).

Note that the set P is never empty by construction, therefore it is always possible
to pick such a point. The local search is then started from this point.

Surrogate Model

Let xbest be the point constructed above. We compute a nonlinear covariance
model as in section 2.2.3 around this point: we consider the points

Xi =

xi

zi

yi

where xi are our iterates, yi =

(
y1i

y2i

)
= F (xi) =

(
F1(xi)
F2(xi)

)
and zi is the vector formed

by the columns of the upper half of the symmetric matrix xix
T
i :

zi = (xi11 xi12 xi22 xi13 xi23 xi33 . . . xi1m . . . ximm)T ,

where xijk = xijxik, i.e. the product of the jth and kth component of xi, and the
weights

wi =
1

‖xi − xbest‖6
2

√
p(xi)− pmin + 1

10

with the p(x) from above and pmin = mini p(xi), i.e. the closer to xbest, the higher
the weight (guaranteeing locality) and the smaller p(x) (i.e. the better the point),

32 CHAPTER 3. MODEL AND ALGORITHM

the higher the weight (guaranteeing a better �t in the area most likely to contain
the optimum), but priority is given to locality (while not discarding global infor-
mation completely). The best point itself (which would have in�nite weight) is
ignored, it is used to center the covariance model instead. The precise formula is
the result of empirical experimentation.

We also tried another approach where we did not treat the best point specially,
instead computing both a mean vector and a covariance matrix with the weights

w̃i =
1(

‖xi − xbest‖2
2 + 1

2

)4
√

p(xi)− pmin + 1
10

,

however the resulting models performed badly on the Rosenbrock function, caus-
ing the algorithm to fail to converge. Forcing the covariance models to be centered
around the best point ensures a more accurate model around that point; in particu-
lar, this trick gets the algorithm to search in a sensible direction for the Rosenbrock
function.

In the presence of implicit equality constraints, there is an additional heuristic:
if we have enough points (we used a hardcoded lower limit of 28 points in our
implementation, but it may make sense to account for the dimension of the points),
we consider only the half with the lowest equality constraint violation ‖F2(x)‖1

and discard the other half. We force the mean of the covariance model to Xbest

(i.e. the Xi with xi = xbest), compute the weighted covariance matrix CX of the
�nite sequence (Xi)i with weights wi as in section 2.2.2 and build a model

klow ≤
(
X − X̄

)T
C−1

X

(
X − X̄

)
≤ kup.

The inversion C−1
X is implemented in practice by computing a Cholesky factoriza-

tion CX = LLT (remember that CX is always positive semide�nite), which gives us
an easy way to handle singular or near-singular CX by regularizing the Cholesky
factorization: we replace zeros or near-zeros in the diagonal of the Cholesky factor,
i.e. Lii ≈ 0, by εCXii with a small constant ε if CXii 6= 0, and 1 otherwise. More
precisely, we regularize the diagonal elements with Lii ≤ εCXii with the above
ε, the non-strict inequality ensures the case Lii = 0 is always taken into account
too. In higher dimensions, we add an additional εCXii to all Lii independently of
the value of Lii because this proved bene�cial in our tests, the models in higher
dimensions tended to be too close to degeneracy without this tweak; we do not do
this in lower dimensions because our tests showed the stronger regularization to
be counterproductive in low dimensions. Let L be the regularized Cholesky factor
and M := L−T L−1. Then the model we consider is klow ≤ k(X) ≤ kup with

k(X) =
(
X − X̄

)T
M

(
X − X̄

)
.

3.2. ALGORITHM 33

What is left to do to put the directional covariance information into practical
use is to pick sensible values for the bounds klow and kup. Let m be the dimension
of the iterates, i.e. xi ∈ Rm. Let N be the set formed by the 2m + 1 iterates Xi

(out of those used to build the covariance model, so points discarded because of
an excessive equality constraint violation are not considered) closest to xbest. If we
don't have 2m + 1 such iterates, let N be the set of all applicable iterates. In case
of points with equal distance, all points with the same distance from xbest as the
(2m + 1)st closest point are added to N . The distance considered is the Euclidean
distance in the x component ‖xi − xbest‖2. We de�ne

klow = min
X∈N

k(X), kup = 2m−1 max
X∈N

k(X).

Finally, we obtain the surrogate problem

min cT

(
x
y1

)
s.t. klow ≤ k(X) ≤ kup

y2 = 0

z = (x11 x12 x22 x13 x23 x33 . . . x1m . . . xmm)T

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu,

eliminate the redundant variables y2 and add bounds zl and zu for z which are
the result of interval multiplications (without rounding control) on the matching
components of xl and xu:

min cT

(
x
y1

)

s.t. klow ≤ k

x
z
y1

0

 ≤ kup

z = (x11 x12 x22 x13 x23 x33 . . . x1m . . . xmm)T

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

zl ≤ z ≤ zu

and optimize the resulting problem using a local optimizer, with

Xbest =

xbest

zbest

ybest

as the starting point. We accept the optimum x̂ as our next iterate.

34 CHAPTER 3. MODEL AND ALGORITHM

3.2.4 Global Search

The goal of our global search is to ��ll the gaps� in the search space. Mathemat-
ically, this means we want to �nd points in areas where the density of already
existing points is low. Therefore, our global search works by minimizing a density
estimator. The motivation for this is given by the observation that neglecting
certain areas can lead to missing the global optimum (whenever it happens to be
located in the neglected area), an empirical observation which has been formalized
and proven by Törn and �ilinskas in [20]. Unfortunately, their theoretical result
is not of immediate use to us: they proved that a global optimization algorithm
using only local information at the iterates can be complete only if the iterates lie
dense in the search space, but both denseness of the iterates and completeness of
the algorithm are asymptotical concepts, they only apply if we allow an in�nite
number of iterates. In practice however, the number of iterates is �nite, and in
our case, function evaluations (of the black box constraints) are assumed to be
expensive, and each new iterate implies a new function evaluation, which forces us
to stop after a relatively small number of iterates. Therefore, asymptotical results
are only of limited use, and thus we do not attempt to construct a sequence which
lies dense in the search space when an in�nite number of points are constructed,
because this will not be useful in practice anyway. Instead, we take a more heuris-
tic approach, using methods from data analysis to de�ne a concept of density for
a �nite number of points, which can then be optimized. In this section we will
assume that there are no implicit equality constraints, the next section will present
a way to deal with those.

As the density estimator we want to minimize, we use a Gaussian mixture
model (GMM, see section 2.2.4), over the x coordinates only, as those are the only
ones we can control. Let N be the number of points we have already computed,
then we consider a sum of

⌊
N
4

⌋
Gaussians. As for the local search, we regularize

the covariance matrices of the Gaussians during the Cholesky factorization. In
this case, if the diagonal element Lii of the cholesky factor is smaller than a small
ε, we simply set Lii := ε. In our implementation, ε was taken to be the square
root of the machine epsilon DBL_EPSILON, but in principle any ε > 0 will do. (In
practice, however, a too small ε will cause numerical di�culties, a too large ε will
lose too much information.)

We compute the GMMs using the Expectation Maximization (EM) iteration
as described in section 2.2.5. As our starting points for the Gaussians, we take
every 4th iterate. We rotate through our iterates, so the same point is used only
once every 4 iterations. The Gaussians are implicitly regularized during the fac-
torization at each step, ensuring that the algorithm doesn't crash in a singular
con�guration. We stop the iteration after a �xed 10 steps. This stopping crite-
rion is arbitrary, but it is hard to give a better one, as the EM iteration tends to

3.2. ALGORITHM 35

become numerically unstable when running too many iterations (at least this was
our observation on our test cases). In particular, in the case where the iteration
converges to a singular model, more and more useful information is lost to regu-
larization with each iteration step. In addition, stopping after a �xed number of
steps also ensures reasonably bounded computation time.

As for the local search, we minimize this density estimator using a third-party
local optimizer. In this case, we optimize over the x coordinates only. The opti-
mization is unconstrained in the case without implicit equality constraints, because
inequality constraints are ignored by design, both due to the inability to deter-
mine the feasible region reliably in the absence of global information and because
evaluating the constraint in infeasible areas can give us useful information to ap-
proximate it within the feasible region, especially at the boundary. As our starting
point, we pick the center of the box. We use the derivative information we explic-
itly computed in section 2.2.4. As for the local search, we accept the optimum x̂
as our next iterate.

We also experimented with approaches based on cluster analysis and subse-
quent density estimation within the clusters (by simply computing the mean and
covariance within the cluster and using a Gaussian distribution with these two pa-
rameters, or rather the sum of these Gaussians over all clusters, as the estimator).
However, with both attempts at cluster analysis we tried:

• a simple approach based on the minimum distance µ between two points,
where two points were de�ned as close to each other if their (Euclidean) dis-
tance did not exceed αµ for some tunable constant α, and the transitive hull
of this closeness relation formed the equivalence relation whose equivalence
classes were de�ned as our clusters,

• a hierarchical approach suggested by Prof. Neumaier, based on a potential
function V (C) =

∑
x∈C ‖x− x̄‖ and a cost function c(C1 ∪ C2) = V (C1 ∪

C2)− V (C1)− V (C2) where two clusters C1 and C2 were merged if the cost
c(C1 ∪C2) of the merger did not exceed a threshold (�xed again to αµ with
some α), the starting con�guration being of one point per cluster.

We found that the parameter α was impossible to tune to produce satisfying clus-
ters in a su�ciently general way (and using a more complex criterion would just
have lead to even more magic parameters). Therefore, we decided to go with the
EM procedure which gives us both the clusters and the density estimator at the
same time and for which the resulting Gaussian mixture model satis�es a provable
optimality criterion (maximum expectation) at the �xed point, if any (which also
means the clustering is optimal in the sense of this criterion).

36 CHAPTER 3. MODEL AND ALGORITHM

3.2.5 Implicit Equality Constraints

A very hard problem in black box optimization is how to handle implicit equality
constraints, i.e. our F2(x) = 0, in an e�cient way, the (ideal) goal being not to
blow up the search space more than if the equality constraint was explicit. For
our local search, this goal was easily reached by substituting y2 = 0 in the result-
ing surrogate problem, which eliminates the variables y2 created by the implicit
constraints completely. When doing global search, however, the implicit equality
constraints are a much more serious problem, and we can no longer reach our goal
by a simple substitution. In fact, we can't reach it fully at all, we can only ap-
proximate it. However, we have seen in our experiments that it is still essential to
do this, as without this treatment, all the global search was wasted on infeasible
areas, handling implicit equality constraints specially helped a lot.

During global search, we do not want to have to search in variables which are
determined by constraints. This is because the goal of global search is to �ll the
gaps in the search space we can control. Explicit constraints make this easy: we
just search in the space spanned by the independent variables and evaluate at the
resulting point to get the values of the dependent variables. With implicit con-
straints, however, we cannot simply do this, because a relation like F (x, y) = 0
doesn't give us any information on what y values, if any, are valid for a given x,
especially in our black box algorithm where we do not have any idea about what
F looks like. The only assumption we can reasonably make is that each implicit
equality constraint corresponds to a hypersurface (i.e. a submanifold of dimension
one less than the dimension of the containing space) or a union of hypersurfaces
in our space of independent variables x. While there are counterexamples even
for that (just consider the obvious case F ≡ 0 which results in the trivial con-
straint 0 = 0, or the case F ≡ 1 which results in the always infeasible 1 = 0),
most practical implicit equality constraints form such hypersurfaces, therefore our
heuristics are tuned for the common case. (This is in contrast to implicit inequal-
ity constraints which do not reduce the dimension of the search space except in
degenerate cases.) In this case, the ideal goal would be to eliminate one dimension
from the search space for each equality constraint. Given that this is not possible
for the reasons discussed above, our algorithm aims instead at making the search
space as narrow as possible in the excess dimension. This is done by introducing
quadratic constraints in the global search which attempt to enclose the correct
equality constraints from both directions. Since we cannot guarantee that the en-
closures will always be rigorous (due to the lack of global information), we rectify
our enclosures over time, such that all already computed points are always within
the enclosures for the constraints (ignoring rounding errors as everywhere else in
the algorithm). At the same time, we generate additional enclosures with every
new point we retain, whether it results from a local or a global search (but not for

3.2. ALGORITHM 37

the starting points).
The general approach to obtain such enclosures was suggested by Stefan

Vigerske, who is using it successfully in his LaGO optimizer [41, 42]. However,
we adapted his approach for our problem. At each new point, we generate two
quadratic estimates for each implicit equality constraint, one from above and one
from below. (Unlike LaGO, we don't sample new points for the sole purpose of
improving the constraint estimates, but instead compute the optimal enclosures
from the points we get during the main algorithm. The worst which can happen
from lacking constraint information is to land at an infeasible point, which will
naturally help improving our enclosures. Function evaluations being expensive,
we cannot a�ord doing additional sampling at the expense of local search.)
Consider the implicit equality constraint F2l(x) = 0. We start by computing
enclosures

F (x) =
∑
i,j

aijxixj +
∑

i

bixi + c

and
F (x) =

∑
i,j

aijxixj +
∑

i

bixi + c

which are the best in the sense of the linear programs

max
∑

k F (xk)
s.t. ∀k : F (xk) ≤ F2l(xk)

F (xnew) = F2l(xnew)

resp.
min

∑
k F (xk)

s.t. ∀k : F (xk) ≥ F2l(xk)
F (xnew) = F2l(xnew)

or in coordinates:

max
∑

i,j (
∑

k xkixkj) aij +
∑

i (
∑

k xki) bi + Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≤ F2l(xk)∑
i,j xnewixnewjaij +

∑
i xnewibi + c = F2l(xnew)

resp.
min

∑
i,j (

∑
k xkixkj) aij +

∑
i (

∑
k xki) bi + Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≥ F2l(xk)∑
i,j xnewixnewjaij +

∑
i xnewibi + c = F2l(xnew)

where N is the number of points, i.e. N =
∑

k 1. For the �rst enclosure (using
the data from the starting points), the last constraint, which requires an exact �t
at the new point, is omitted. The linear programs are solved using the lp_solve

38 CHAPTER 3. MODEL AND ALGORITHM

library. Unlike LaGO, which proceeds to computing convex enclosures out of these,
we work with the (in general nonconvex) quadratic enclosures directly.

We then apply the following relaxation: let's assume the enclosure F (x) ≤
F (x) ≤ F (x) holds for all x. Then the pair of constraints F (x) ≥ 0 and F (x) ≤
0 forms a relaxation for the equality constraint F (x) = 0. We apply this to
our constraint F2l(x) = 0, replacing it with the two constraints F (x) ≥ −τ and
F (x) ≤ τ , where τ ≥ 0 is a small heuristic tolerance compensating for the fact
that our enclosures may be o� due to lack of information. We add these two
constraints to our global search minimization problem, which is then solved in
two steps (as doing it in one step didn't achieve satisfying convergence with the
two supported local optimizers): we �rst run the global search with only bound
constraints, starting at the center of the box, then we use this point as the starting
point for the fully constrained global search.

We never throw away enclosures, instead we accumulate more and more of
them as the algorithm proceeds. We do, however, correct them if we �nd them to
be wrong, i.e. if we �nd a new point x′ with F2l(x

′) < F (x′) or F2l(x
′) > F (x′).

This is simply done by adjusting the constant term c resp. c by the amount needed
to make the new point �t, i.e. to obtain F2l(x

′) = F (x′) resp. F2l(x
′) = F (x′).

Chapter 4

Implementation

This chapter details our implementation of the algorithm we have just described.
It also contains excerpts from the source code, which can be obtained at http:
//www.tigen.org/kevin.kofler/bbowda/. We will start by documenting the
�les describing the input model, which have to be �lled in by the user. In a second
section, we describe our implementation of the algorithm itself. In a third section,
we describe the abstraction used to interface our algorithm with third-party local
NLP optimizers.

The implementation is implemented in the ISO C99 language [43, 44] and
licensed under the GNU General Public License, version 3 [45] or later, with special
exceptions allowing to link with the third-party optimizers used.

4.1 Copyright and License Notice

The exact copyright notice and license terms for the implementation are repro-
duced hereforth:

/* bbowda - Black Box Optimization With Data Analysis

Copyright (C) 2006-2007 Kevin Kofler <Kevin@tigcc.ticalc.org>

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version. A copy of the GNU General Public

License version 3 can be found in the file gpl-3.0.txt.

Linking bbowda statically or dynamically (directly or indirectly) with

other modules is making a combined work based on bbowda. Thus, the terms

and conditions of the GNU General Public License cover the whole

combination.

39

40 CHAPTER 4. IMPLEMENTATION

In addition, as a special exception, the copyright holder of bbowda gives

you permission to combine the bbowda program:

* with free software programs or libraries that are released under the

GNU Library or Lesser General Public License (LGPL), either version 2

of the License, or (at your option) any later version,

* with free software programs or libraries that are released under the

IBM Common Public License (CPL), either version 1.0 of the License, or

(at your option) any later version,

* with code included in the standard release of MUMPS under the MUMPS

Conditions of Use as reproduced in licenses.txt (or modified versions

of such code, with unchanged license) and

* if you qualify for a free of charge license of DONLP2, with code

included in the standard release of DONLP2 under the DONLP2 Conditions

of Use as reproduced in licenses.txt (or modified versions of such code,

with unchanged license).

You may copy and distribute such a system following the terms of the GNU

GPL for bbowda and the licenses of the other code concerned, provided that

you include the source code of that other code when and as the GNU GPL

requires distribution of source code.

Note that people who make modified versions of bbowda are not obligated

to grant this special exception for their modified versions; it is their

choice whether to do so. The GNU General Public License gives permission

to release a modified version without this exception; this exception also

makes it possible to release a modified version which carries forward

this exception.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>. */

4.2 Required User Input

User input has to be provided in two C �les, one header and one source �le, and
compiled with the project. Problem dimensions have to be speci�ed in a header
�le probldim.h because many array sizes in the source code depend on these.
The actual implementation of the function must be provided as C source code in
problem.c. Of course, this does not mean the full implementation has to be in C.
It is also possible to call external routines or read input from an external source,
such as the console, a �le or a network, from within problem.c. The program must
then be recompiled with the user input (using make to build against DONLP2 or

4.2. REQUIRED USER INPUT 41

make -f Makefile.ipopt to build against Ipopt) and run: ./exe.
We will explain the required input on the following example, which is the

dispatch example from GLOBALLib [46], with some hand-added bounds:

min y1

s.t. y1 = .00533x2
1 + 11.669x1 + .00889x2

2 + 10.333x2 + .00741x2
3

+10.833x3

y2 = x1 + x2 + x3 − x4

0 = .000766x1 + .0000342x2 − .000189x3 + x4 − .000676x2
1

−.000521x2
2 − .000294x2

3 − .0000953x1x2 + .0000507x1x3

−.0000953x2x1 − .0000901x2x3 + .0000507x3x1

−.0000901x3x2 − .040357
x1 ∈ [50, 200]
x2 ∈ [37.5, 150]
x3 ∈ [45, 180]
x4 ∈ [−200, 320]
y1 ∈ [1000, 7000]
y2 ∈ [210, 730]

4.2.1 Problem Dimensions (probldim.h)

/* USER INPUT: Problem dimensions */

#define DIMX 4

#define DIMY 2

#define DIMY_EQ 1

The �rst required input is the dimensions of the problem. DIMX is the number of
x (independent) variables. DIMY is the number of y variables, i.e. the number of
variables given by explicit equality conditions. DIMY_EQ is the number of implicit
equality conditions.

/* USER INPUT: Number of starting points */

#define NUMINITPTS 0

It is possible to provide some starting points, e.g. if a good starting point is known
from the application. Here, we set NUMINITPTS to 0, which means all starting
points will be automatically generated through the procedure described in section
3.2.2.

/* USER INPUT: Maximum points to evaluate */

#define MAXPTS 100

42 CHAPTER 4. IMPLEMENTATION

This important parameter tells the algorithm how many function evaluations can
be used. Each new point found by local or global search requires one function
evaluation. Note that extrapolation may use one additional function evaluation,
so expect a maximum of MAXPTS + 1 function evaluations if DIMY_EQ 6= 0.

/* USER INPUT: Tolerance for optimum feasibility */

#define OPTIMUM_TOL .001

In black box optimization, it is usually not possible to guarantee exact feasibility,
especially in the presence of implicit equality constraints. This parameter tells the
algorithm by how much each bound or implicit equality constraint can be violated
before a point has to be declared infeasible. Infeasible points will never be reported
as a solution. This tolerance is also used during the extrapolation step. Due to
the construction of the algorithm, the bounds for the x variables should never be
violated, but the y bounds and the implicit equality constraints may be.

/* USER INPUT: If defined, ignore equality constraints for global search */

#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

This option may be used to force the global search to search the entire x space
even in the presence of implicit equality constraints. Use of this option is not
recommended.

/* USER INPUT: Tolerance for the constraints estimating the equality constraints

during global search */

#define ESTIMATE_CONSTRAINT_TOL .01

This tolerance is used when handling implicit equality constraints to compensate
for approximation errors made when computing the enclosures. It is the parameter
τ from section 3.2.5. This parameter is set here in order to allow it to be tuned
for a speci�c problem, we recommend using .01 as in this example.

4.2.2 Problem Implementation (problem.c)

/* min cT (x, F(x)) */

DOUBLE c[DIMX+DIMY]={0.,0.,0.,0.,1,0.,};

These are the coe�cients of the variables in the objective function, �rst for x,
then for y. The objective function is required to be linear. If your objective
function is nonlinear (or if the coe�cients are not known), substitute a variable yi

for it (or its nonlinear part) and introduce an explicit equality constraint for yi.
In this example, the objective function is simply y1 (the result of the preceding
transformation).

4.2. REQUIRED USER INPUT 43

/* s.t. Flow <= F(x) <= Fup */

DOUBLE Flow[DIMY]={1000,210,};

DOUBLE Fup[DIMY]={7000,730,};

These are the bounds for the y variables. They are required to be �nite, but they
may be almost arbitrarily large (everything below 2 · 1019 should be safe).

/* xlow <= x <= xup */

DOUBLE xlow[DIMX]={50,37.5,45,-200,};

DOUBLE xup[DIMX]={200,150,180,320,};

And these are the bounds for the x variables. These are also required to be �nite,
and it is important for them to be as close together as possible because these are
the bounds de�ning the search space for the global search. Thus, if you know there
cannot be any feasible points with xi smaller or larger than a given value, always
set the bounds accordingly to ensure maximum e�ciency.

/* starting points */

DOUBLE initpts[NUMINITPTS][DIMX]={};

Starting points (x coordinates only), if any, may be provided here. The num-
ber of starting points given here must match the number NUMINITPTS given in
probldim.h. Starting points should be located within the bounds for the x vari-
ables, but are otherwise not required to be feasible.

/* evaluate F(x) */

void evaluate_F(const DOUBLE *x, DOUBLE *F)

{

*(F++) = 11.669 * x[0] + 10.333 * x[1] + 10.833 * x[2]

+ .00533 * pow(x[0], 2) + .00889 * pow(x[1], 2)

+ .00741 * pow(x[2], 2);

*(F++) = x[0] + x[1] + x[2] - x[3];

*(F++) = .000766 * x[0] + 3.42e-05 * x[1] - .000189 * x[2] + x[3]

- .000676 * pow(x[0], 2) - .000521 * pow(x[1], 2)

- .000294 * pow(x[2], 2) - .0001906 * x[0] * x[1]

+ 5.07e-05 * x[0] * x[2] + 5.07e-05 * x[0] * x[2]

- .0001802 * x[1] * x[2] - .040357;

}

This is the callback which evaluates the constraints. It takes a vector x (containing
the independent variables x) as input and must produce an output vector F. The
input has the dimension DIMX, the output must have the dimension DIMY+DIMY_EQ
and be correctly sorted (explicit constraints �rst, implicit equality constraints sec-
ond). Please keep in mind that the �rst index in a C array is 0, not
1!

44 CHAPTER 4. IMPLEMENTATION

In this example, the output vector is simply computed through explicit formu-
las. In general, however, it may be any arbitrary C function, which implies external
subroutines in any language which can be linked to C may be used, I/O may be
performed etc. This is the only callback through which user-provided functions
are evaluated, in particular, no gradient information is required or used.

4.3 Implementation of the Algorithm

Our implementation is divided into one source �le for each logical module: main.c
contains the main function, covar.c contains functions to compute local covari-
ance models for the local search, eqconst.c encloses implicit equality constraints,
gmmem.c contains functions to compute global GMMs for the global search us-
ing EM iteration and eval.c contains functions evaluating di�erent properties of
the model, such as the current best point. The implementation also calls into
the user-provided model as described in the previous section and the interface to
third-party NLP optimizers as described in the next section.

4.3.1 Main Function (main.c)

Our main function implements the overall structure of the algorithm as described
in section 3.2.1.

static const int enable_global_search=TRUE;

This variable allows disabling the global search. It is retained mainly for experi-
mental purposes. All our results are obtained with the global search enabled.

int main(void) {

size_t i;

int ret;

/* ensure reproducible results */

srand(31337);

We initialize the pseudorandom number generator to a known constant seed in
order to ensure we will get the same results over several runs of the algorithm,
as true randomness would make debugging very di�cult and bring no gains in
practice.

/* evaluate constraints at starting points */

init_points();

Next, we evaluate the constraints at the user-provided starting point. The actual
implementation of this function is located in eval.c.

4.3. IMPLEMENTATION OF THE ALGORITHM 45

/* if we don't have enough starting points, generate more */

#if DIMX<5

#define N_START (DIMX+DIMY+DIMY_EQ+6)

#elif DIMX<10

#define N_START (DIMX+DIMX+DIMY+DIMY_EQ+2)

#else

#define N_START (4*DIMX+DIMY+DIMY_EQ-16)

#endif

if (numcurrpts < N_START) {

/* consider a grid of (N_START*2)*(N_START*2) points

don't generate 2 points on the same xk */

unsigned char used_x[DIMX][N_START*2]={};

/* mark all the already used xk */

size_t i, k, n_used_x[DIMX]={};

DOUBLE delta_x[DIMX];

for (k=0; k<(size_t)DIMX; k++) {

delta_x[k]=(xup[k]-xlow[k])/(DOUBLE)(N_START*2-1);

}

for (i=0; i<numcurrpts; i++) {

/* round the given starting points to the closest x and y on the grid */

DOUBLE *x=currpts[i];

for (k=0; k<(size_t)DIMX; k++) {

if (delta_x[k]!=0.) { /* filter out equality bounds */

long j=lround((x[k]-xlow[k])/delta_x[k]);

if (j<0) { /* sanity check */

printf("WARNING: Starting value %lf out of bounds [%lf,%lf].\n",

x[k],xlow[k],xup[k]);

j=0;

}

if (j>=2*N_START) { /* sanity check */

printf("WARNING: Starting value %lf out of bounds [%lf,%lf].\n",

x[k],xlow[k],xup[k]);

j=2*N_START-1;

}

if (!used_x[k][j]) n_used_x[k]++;

used_x[k][j]=TRUE;

}

}

}

/* now loop until we have enough starting points */

while (numcurrpts < N_START) {

/* generate a starting point */

/* try 10 points, pick the one the farthest away */

DOUBLE new_x[DIMX], dist=-INFINITY;

size_t t, j[DIMX];

for (t=0; t<10; t++) {

DOUBLE new_x_t[DIMX], dist_t=INFINITY;

size_t j_t[DIMX], i;

/* generate point */

46 CHAPTER 4. IMPLEMENTATION

for (k=0; k<(size_t)DIMX; k++) {

/* equiprobability among the not yet used xk */

size_t j,jtk_index=((unsigned long long)rand()

*(unsigned long

long)((size_t)(N_START*2)-n_used_x[k]))

/((unsigned long long)(RAND_MAX)+1ull);

for (j=0; j<(size_t)(N_START*2); j++) {

if (!used_x[k][j]) {

if (!jtk_index--) {

new_x_t[k]=xlow[k]+(DOUBLE)j*delta_x[k];

j_t[k]=j;

break;

}

}

}

}

/* compute squared distance to the closest point */

for (i=0; i<numcurrpts; i++) {

DOUBLE *x=currpts[i], dist_t_i=0.;

for (k=0; k<(size_t)DIMX; k++) {

dist_t_i+=(new_x_t[k]-x[k])*(new_x_t[k]-x[k]);

}

if (dist_t_i<dist_t) dist_t=dist_t_i;

}

/* keep the point if it's better */

if (dist_t>dist) {

dist=dist_t;

memcpy(j,j_t,(size_t)DIMX*sizeof(size_t));

memcpy(new_x,new_x_t,(size_t)DIMX*sizeof(DOUBLE));

}

}

/* mark the xk[j] as used */

for (k=0; k<(size_t)DIMX; k++) {

used_x[k][j[k]]=TRUE;

n_used_x[k]++;

}

/* evaluate constraints at the new starting point */

printf("Generated starting point x=[");

if (DIMX) {

printf("%lf",new_x[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",new_x[i]);

}

printf("]\n");

new_point(new_x);

}

}

4.3. IMPLEMENTATION OF THE ALGORITHM 47

This section implements the algorithm for starting point generation described in
section 3.2.2. We �rst create our grid, but as already discussed there, we do not
actually compute all the exponentially many points on the grid. Instead, we only
keep one vector by dimension to keep track of the already used indices. First,
we �ll in the indices already used by the user-provided starting points (when
rounding to the nearest points on the grid as discussed in section 3.2.2), then
we generate the actual points. We also warn about user-provided starting points
which aren't within the bounds for the x variables if we detect any during the
rounding procedure.

/* compute first global over-/underestimates of equality constraints */

compute_1st_global_eq_cst_estimates();

Next, we call this function from eqconst.c to compute a �rst enclosure for the
implicit equality constraints from the startup points (both the user-provided ones
and the automatically computed ones). The function is a noop if there are no
implicit equality constraints.

/* optimize until we have reached the maximum number of evaluations */

while (numcurrpts < MAXPTS) {

Now that everything is set up, we can start the main loop of our implementation.

if (enable_global_search && (numcurrpts & 1)) { /* global (gapfilling)

search */

/* compute a density function (gmm) */

build_density_gmm();

/* minimize the density function under the constraints */

ignore_constraints=TRUE;

if (num_estimate_constraints) {

ret=solve_nlp();

printf("Global presearch found x=[");

if (DIMX) {

printf("%lf",optimum_x[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",optimum_x[i]);

}

printf("] (reason: %d)\n",ret);

ignore_constraints=FALSE;

}

ret=solve_nlp();

/* free the density function parameters */

free_gmm();

printf("Global search found x=[");

48 CHAPTER 4. IMPLEMENTATION

This section implements the global search as described in section 3.2.4. The func-
tions called are implemented in gmmem.c, except for solve_nlp, which is part of
the interface to the NLP libraries. See the documentation of gmmem.c for details.

} else { /* local search */

/* choose best point */

get_best_point();

/* build regularized covariance model around the point */

build_local_regcovar_model();

/* optimize the covariance model */

ret=solve_nlp();

printf("Local search found x=[");

}

This section implements the local search as described in section
3.2.3. The get_best_point function is implemented in eval.c,
build_local_regcovar_model in covar.c and solve_nlp is part of the
interface to the NLP libraries. Again, details can be found in the documentation
of the respective functions.

if (DIMX) {

printf("%lf",optimum_x[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",optimum_x[i]);

}

printf("] (reason: %d)\n",ret);

/* evaluate constraints at optimum */

new_point(optimum_x);

}

This section is common to the local and global searches. It outputs the point
found by the search, then calls the new_point function from eval.c to retain it.
new_point also takes care of evaluating the constraints at the new point and, in
the presence of implicit equality constraints, updating the enclosures for those.

#if DIMY_EQ

extrapolate_point();

#endif

If we have implicit equality constraints, we try extrapolating a feasible point from
near-feasible ones with good objective function values. See the documentation of
extrapolate_point in eval.c for details.

printf("Optimum: %lf at x=[",get_optimum_x());

if (DIMX) {

4.3. IMPLEMENTATION OF THE ALGORITHM 49

printf("%lf",optimum_x[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",optimum_x[i]);

}

printf("]\n");

return 0;

}

Finally, we output the optimal point found and its objective function value and
return success. Only points feasible up to the user-provided tolerance OPTIMUM_TOL
are considered. get_optimum_x is implemented in eval.c.

4.3.2 Local Covariance Models (covar.c)

This �le creates the surrogate models for the local search as described in section
3.2.3. The actual optimization is then done by the NLP optimizer. We assume a
�best point� has already been picked, this is the task of get_best_point in eval.c.
(�Best point� is in quotes because a Pareto �lter approach is used, meaning there
is no one best point.)

/* Cholesky factor of the covariance matrix */

static DOUBLE L[DIMX+DIMZ+DIMY+DIMY_EQ][DIMX+DIMZ+DIMY+DIMY_EQ];

/* Transpose of L, reversed, to avoid cache misses in compute_MX */

static DOUBLE LTrev[DIMX+DIMZ+DIMY+DIMY_EQ][DIMX+DIMZ+DIMY+DIMY_EQ];

/* Copy of currpts sorted by the norm of the equality constraint violation */

static DOUBLE (*usedpts)[DIMX+DIMY+DIMY_EQ]=NULL;

/* Full number of points in usedpts */

static size_t usedpts_size;

/* Number of points in usedpts which should actually be used */

static size_t numusedpts;

These variables are used internally in the functions below. L is the Cholesky
factor of the covariance matrix, it should only be used through the public function
compute_MX. LTrev is used for performance reasons: while pro�ling, we found the
function compute_MX to be called very often, and solving the upper triangular
system LT u = v was found to cause many cache misses when done using L. Thus,
it pays to rearrange the matrix L for more e�cient cache use. numusedpts is the
number of points actually considered for the covariance model, after eliminating
those rejected due to an excessive implicit equality constraint violation as described
in section 3.2.3. The usedpts array is a sorted version of the global currpts array,
so that we only have to loop through the �rst numusedpts elements of usedpts to
enumerate the elements actially used, usedpts_size keeps track of its number of

50 CHAPTER 4. IMPLEMENTATION

elements so new points can be inserted using insertion sort rather than having to
resort the entire array each time.

/* Global variables */

DOUBLE Xbar[DIMX+DIMZ+DIMY+DIMY_EQ];

DOUBLE klow;

DOUBLE kup;

These global variables are part of the public interface. They represent X̄, klow and
kup in the covariance model, respectively.

static void for_each_used(DOUBLE *acc, DOUBLE *aux, void (*update)(const DOUBLE

*, DOUBLE *, DOUBLE *))

{

size_t j;

for (j=0; j<numusedpts; j++) {

update(usedpts[j],acc,aux);

}

}

This is an internal utility function which calls a function through the function
pointer update for each actually used point, passing two pointers to DOUBLE passed
as arguments through so statistical measures such as sums can be accumulated.

/* MX = C^-1 X = (L LT)^-1 X = L^-T L^-1 X */

void compute_MX(const DOUBLE *X, DOUBLE *MX)

{

size_t i,j,k;

/* MX := L^-1 X */

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

MX[i]=X[i];

for (j=0; j<i; j++) {

MX[i]-=L[i][j]*MX[j];

}

MX[i]/=L[i][i];

}

/* MX := L^-T X */

/* try hard to avoid cache misses */

for (k=0; k<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); k++) {

j=i;

DOUBLE d=LTrev[k][--i];

for (; j<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); j++) {

MX[i]-=LTrev[k][j]*MX[j];

}

MX[i]/=d;

}

}

4.3. IMPLEMENTATION OF THE ALGORITHM 51

This public function computes the matrix-vector product
MX = C−1X = L−T L−1X needed in the covariance model by solving two
triangular systems of linear equations. As discussed above, we use the rearranged
matrix LTrev in the second loop to reduce the number of cache misses.

/* empirical formula for the weight:

* our point weights decrease with the 6th power of the distance

* the worse the point, the less it will be weighted

weight = (||x-xbest||^2)^(-6)/(1/10+(goodness-best_goodness))^(1/2) */

static DOUBLE weight_of_point(const DOUBLE *x)

{

size_t i;

DOUBLE goodness=get_point_goodness(x), weight=0.;

for (i=0; i<(size_t)DIMX; i++) {

DOUBLE d=best_point[i]-x[i];

weight += d*d;

}

if (weight == 0.) return 0.;

weight = pow(weight,-3.);

weight /= sqrt(.1+(goodness-best_goodness));

return weight;

}

This internal function computes the weight of a point in the weighted covariance
model using the empirical formula indicated in the comment. The best point has
weight zero, it is used to center the covariance model instead.

static void compute_covar(const DOUBLE *x, DOUBLE *Xbar, DOUBLE *count)

{

size_t i,j,k,l,a,b;

DOUBLE weight=weight_of_point(x);

for (i=0; i<(size_t)DIMX; i++) {

for (k=0; k<=i; k++) {

L[i][k] += weight*(x[i]-Xbar[i])*(x[k]-Xbar[k]);

}

}

for (i=0,a=(size_t)DIMX; i<(size_t)DIMX; i++) {

for (j=0; j<=i; j++,a++) {

for (k=0; k<(size_t)DIMX; k++) {

L[a][k] += weight*(x[i]*x[j]-Xbar[a])*(x[k]-Xbar[k]);

}

for (k=0,b=(size_t)DIMX; b<=a; k++) {

for (l=0; l<=k && b<=a; l++,b++) {

L[a][b] += weight*(x[i]*x[j]-Xbar[a])*(x[k]*x[l]-Xbar[b]);

}

}

}

}

52 CHAPTER 4. IMPLEMENTATION

for (i=0; i<(size_t)(DIMY+DIMY_EQ); i++) {

for (k=0; k<(size_t)DIMX; k++) {

L[i+DIMX+DIMZ][k] += weight*(x[i+DIMX]-Xbar[i+DIMX+DIMZ])*(x[k]-Xbar[k]);

}

for (k=0,b=(size_t)DIMX; k<(size_t)DIMX; k++) {

for (l=0; l<=k; l++,b++) {

L[i+DIMX+DIMZ][b] +=

weight*(x[i+DIMX]-Xbar[i+DIMX+DIMZ])*(x[k]*x[l]-Xbar[b]);

}

}

for (k=0; k<=i; k++) {

L[i+DIMX+DIMZ][k+DIMX+DIMZ] +=

weight*(x[i+DIMX]-Xbar[i+DIMX+DIMZ])*(x[k+DIMX]-Xbar[k+DIMX+DIMZ]);

}

}

(*count)+=weight;

}

This internal function is used together with for_each_used to compute the
weighted covariance matrix and the weighted count, i.e. the sum of the weights,
of the used points, with the given mean Xbar. The covariance matrix is stored in
L because it will be factored in place.

static void compute_kup_klow(const DOUBLE *x, DOUBLE *dmax, DOUBLE *aux

ATTR_UNUSED)

{

/* compute k = XT M X */

DOUBLE X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ], *p=X, k=0.,

d=0.;

size_t i,j;

for (i=0; i<(size_t)DIMX; i++) {

d += (x[i]-best_point[i])*(x[i]-best_point[i]);

}

if (d>*dmax) return;

for (i=0; i<(size_t)DIMX; i++) {

*(p++) = x[i];

}

for (i=0; i<(size_t)DIMX; i++) {

for (j=0; j<=i; j++) {

*(p++) = x[i]*x[j];

}

}

for (i=0; i<(size_t)(DIMY+DIMY_EQ); i++) {

*(p++) = x[DIMX+i];

}

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

X[i] -= Xbar[i];

}

4.3. IMPLEMENTATION OF THE ALGORITHM 53

compute_MX(X,MX);

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

k += X[i]*MX[i];

}

/* update kup, klow */

if (k>kup) kup=k;

if (k<klow) klow=k;

}

This internal function is used together with for_each_used to compute the lower
bound klow and the upper bound kup for the covariance model. We ignore points
which are more than dmax away from the best point, evaluate the covariance model
for the remaining ones, and retain the smallest result as klow and the largest one
as kup.

static int compare_DOUBLE(const void *p, const void *q)

{

return (*(DOUBLE *)p>*(DOUBLE *)q)-(*(DOUBLE *)p<*(DOUBLE *)q);

}

This is the qsort callback used to sort distances.

static int compare_yeq(const void *p, const void *q)

{

size_t i;

DOUBLE yeq1=0., yeq2=0.;

// compute norm(p[yeq])^2 and norm(q[yeq])^2

for (i=(size_t)(DIMX+DIMY); i<(size_t)(DIMX+DIMY+DIMY_EQ); i++) {

yeq1+=i[(DOUBLE*)p]*i[(DOUBLE*)p];

yeq2+=i[(DOUBLE*)q]*i[(DOUBLE*)q];

}

// compare them

return (yeq1>yeq2)-(yeq1<yeq2);

}

This is the qsort callback used to sort implicit equality constraint violations.

void build_local_regcovar_model(void)

{

This is the main function of covar.c.

if (DIMY_EQ) {

if (usedpts) {

/* make room for the new points in usedpts */

usedpts=xrealloc(usedpts,

54 CHAPTER 4. IMPLEMENTATION

numcurrpts*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

/* sort the new points by the norm of the equality constraint violation

using insertion sort */

size_t i,j;

for (i=usedpts_size; i<numcurrpts; i++) {

/* This could be done more efficiently using binary search, but the

memmove is O(n) anyway. We can't use bsearch as it only returns exact

matches. */

for (j=0; j<i; j++) {

if (compare_yeq(currpts[i],usedpts[j])>=0) break;

}

memmove(usedpts+j+1,usedpts+j,

(i-j)*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

memcpy(usedpts[j],currpts[i],

((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

}

} else {

/* allocate a copy of currpts */

usedpts=xmalloc(numcurrpts*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

memcpy(usedpts,currpts,

numcurrpts*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

/* sort the points by the norm of the equality constraint violation */

qsort(usedpts,numcurrpts,(size_t)(DIMX+DIMY+DIMY_EQ)*sizeof(DOUBLE),

compare_yeq);

}

usedpts_size=numcurrpts;

/* use only the first half unless we don't have enough points */

numusedpts=(numcurrpts>=28)?(numcurrpts>>1):numcurrpts;

As described in section 3.2.3, if we have implicit equality constraints, we do not
use all the points, but only the half with the smallest implicit equality constraint
violations, except at the beginning where we have less than 28 points (an arbitrary
threshold). Therefore, we maintain usedpts as a sorted copy of currpts, which
allows simply looping through the �rst numusedpts points of usedpts to enumerate
the points which shall be used. The passage above takes care of this sorting.

} else {

numusedpts=numcurrpts;

usedpts=currpts;

}

If we do not have implicit equality constraints, we can simply use the original
currpts array directly.

/* compute the covariance matrix */

size_t i,j,k;

DOUBLE n=0., Cdiag[DIMX+DIMZ+DIMY+DIMY_EQ], d[numusedpts], dmax;

4.3. IMPLEMENTATION OF THE ALGORITHM 55

for (k=0; k<(size_t)DIMX; k++) {

Xbar[k]=best_point[k];

}

for (i=0; i<(size_t)DIMX; i++) {

for (j=0; j<=i; j++) {

Xbar[k++]=best_point[i]*best_point[j];

}

}

for (k=0; k<(size_t)(DIMY+DIMY_EQ); k++) {

Xbar[k+DIMX+DIMZ]=best_point[k+DIMX];

}

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

for (j=0; j<=i; j++) {

L[i][j]=0.;

}

}

for_each_used(Xbar,&n,compute_covar);

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

for (j=0; j<=i; j++) {

L[i][j]/=n;

}

}

Next, we compute the actual covariance matrix using the for_each_used function
with the compute_covar callback. The algorithm used is simply the de�nition of
the covariance matrix, where the mean is forced to the best point.

/* save the diagonal of the matrix */

for (j=0; j<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); j++) {

Cdiag[j]=L[j][j];

}

We save the diagonal of the unfactored covariance matrix in a local array because
we need it for regularization.

/* compute the regularized Cholesky factorization of the matrix */

for (j=0; j<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); j++) {

DOUBLE Ljj;

/* regularize */

if (L[j][j]<=sqrt(DBL_EPSILON)*Cdiag[j]) {

L[j][j]=(Cdiag[j]==0.)?1.:(sqrt(DBL_EPSILON)*Cdiag[j]);

}

/* in higher dimensions, regularize harder */

if (DIMX > 6)

L[j][j]+=sqrt(DBL_EPSILON)*Cdiag[j];

Ljj=L[j][j];

for (i=j+1; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

56 CHAPTER 4. IMPLEMENTATION

for (k=i; k<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); k++) {

L[k][i]-=L[k][j]*L[i][j]/Ljj;

}

}

for (k=j; k<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); k++) {

L[k][j]/=sqrt(Ljj);

}

}

Next, we compute the Cholesky factorization of the covariance matrix. The
factorization is computed in place. If we detect a diagonal element which is
too small, we regularize the factorization. This process uses the diagonal el-
ements Cjj (Cdiag[j]) of the unfactored C saved above: We check if Ljj ≤√
DBL_EPSILON Cjj. If it is, we replace it with

√
DBL_EPSILON Cjj, or with the

arbitrary 1 if Cjj = 0. This corresponds to adding
√
DBL_EPSILON Cjj − Ljj or 1

to the original diagonal element Cjj. In higher dimensions, we add an additional√
DBL_EPSILON Cjj to the diagonal.

/* compute the reversed transpose */

for (i=0; i<(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ); i++) {

for (j=0; j<=i; j++) {

LTrev[(size_t)(DIMX+DIMZ+DIMY+DIMY_EQ-1)-j][i]=L[i][j];

}

}

We also compute the rearranged version LTrev of L.

if (numusedpts<=(DIMX<<1)) {

dmax=INFINITY;

} else {

/* compute distances from best point */

for (j=0; j<numusedpts; j++) {

d[j]=0.;

for (i=0; i<(size_t)DIMX; i++) {

d[j]+=(usedpts[j][i]-best_point[i])*(usedpts[j][i]-best_point[i]);

}

}

/* sort them */

qsort(d,numusedpts,sizeof(DOUBLE),compare_DOUBLE);

/* take the 2*DIMX+1st entry as dmax, i.e. take at least 2*DIMX+1 points

into

account */

dmax=d[DIMX<<1];

}

We then compute the maximum distance up to which points are considered for
klow and kup, in order to obtain a su�ciently local covariance model. As described

4.3. IMPLEMENTATION OF THE ALGORITHM 57

in section 3.2.3, we consider the 2 DIMX+ 1 points closest to the best point (where
in case of a tie we accept all points with the same distance dmax), or all used points
if we don't have 2 DIMX + 1 of them.

/* compute kup, klow */

kup=-INFINITY;

klow=INFINITY;

for_each_used(&dmax,NULL,compute_kup_klow);

Using this information, we compute klow and kup.

/* fudge kup for higher dimensions so we get reasonably-sized trust regions,

otherwise the local search gets stuck in a non-optimal point */

kup *= pow(2.,(DOUBLE)(DIMX-1));

This trick works around a problem we encountered during testing: Our covariance
models not only approximate the functions, but also implicitly de�ne a trust region
to which the local search is restricted. Unfortunately, in higher dimensions, these
trust regions turn out way too small, causing the algorithm to get stuck in a non-
stationary point and fail to converge to the actual minimum. (We observed this
phenomenon with a simple convex quadratic function.) To compensate for this
e�ect, we multiply the upper bound for our error ellipsoid by a correction factor
of 2DIMX−1.

/* set the NLP solver to optimize the local covariance model */

optimization_problem=0;

}

Finally, we tell our NLP solver interface that the next problem to solve is a local
covariance model.

4.3.3 Equality Constraint Approximation (eqconst.c)

This �le contains functions to enclose implicit equality constraints as described in
section 3.2.5. The term estimate constraints will be used in this section to refer
to the computed estimated enclosures for the original implicit equality constraints
which are used during the global search. As described in section 3.2.5, the estimate
constraints are quadratic. In the actual practical implementation, it may happen
that solving the linear programs for the estimate constraints runs into numerical
di�culties, in which case we simply skip the o�ending enclosure, as the worst, this
can lead to, is a larger search space as necessary for the global search.

/* number of over-/underestimate constraints */

size_t num_estimate_constraints=0;

/* coefficients of over-/underestimate constraints */

DOUBLE (*estimate_constraint_coeffs)[1+DIMX+DIMZ]=NULL;

58 CHAPTER 4. IMPLEMENTATION

These public globals keep track of the number and the coe�cients of the estimate
constraints. As the constraints are quadratic, we need to save 1 + DIMX + DIMZ

coe�cients to fully represent one such constraint, where DIMX is the dimension
of the x variables and DIMZ the number of quadratic and bilinear products of x
variables.

static size_t *n_estimated_constraint=NULL;

static unsigned char *is_overestimator=NULL;

These internal arrays keep track of which original constraint is being approximated
by the estimate constraint and whether it is an underestimator or an overestimator.
This information is used when rectifying enclosures revealed incorrect by new com-
puted points. It is necessary to maintain this data because estimate constraints
may not be retained in the case of numerical di�culties, and thus the number of
the estimate constraint is not su�cient to deduce this information.

static void eqconst_optimize_lp(const DOUBLE *X, const int over, const size_t

constraint_no)

{

This internal function generates the linear program for one estimate constraint
and calls the lp_solve library to solve it. The required input is the number of the
constraint to approximate, whether it is an underestimator or an overestimator
and the point, if any, at which the �t should be exact. The parameter X may be
NULL to indicate that no exact �t is needed. This feature is used when computing
the initial estimates from the starting points.

lprec *lp;

REAL row[DIMX+DIMZ+2]={}; /* must be 1 more then number of columns ! */

/* (Sigh. I can understand DONLP2 using 1-based indexing, being ported from

Fortran, but this makes just no sense. Index 0 is not used at all.) */

The linear program to be passed to lp_solve is passed in these variables. A
feature of the lp_solve interface which may be unexpected to C programmers
is that it uses index 1 as the base of its arrays even in the C interface, thus the
comment warning about this unusual interface.

/* create a new LP model */

lp=make_lp(0,1+DIMX+DIMZ);

if (!lp) {

fprintf(stderr, "make_lp failed\n");

exit(1);

}

/* For the underestimate, we want to maximize to get the best (closest) one.

4.3. IMPLEMENTATION OF THE ALGORITHM 59

For the overestimate, we want to minimize to get the best (closest) one. */

if (!over) set_maxim(lp);

/* bounds: upper defaults to +Inf, which is OK, lower defaults to 0, we need

-Inf */

size_t i;

REAL infinite=get_infinite(lp); /* lp_solve uses a fake infinity */

for (i=1; i<=(size_t)(1+DIMX+DIMZ); i++) {

set_lowbo(lp,i,-infinite);

}

/* objective function

coefficient of qi: sum phi_i(xj) for all j */

size_t j;

row[1]=numcurrpts; /* constant term */

for (j=0; j<numcurrpts; j++) {

REAL *p=row+2;

DOUBLE *x=currpts[j];

size_t k,l;

for (k=0; k<(size_t)DIMX; k++) { /* linear terms */

*(p++)+=x[k];

}

for (k=0; k<(size_t)DIMX; k++) { /* quadratic/bilinear terms */

for (l=0; l<=k; l++) {

*(p++)+=(x[k]*x[l]);

}

}

}

if (!set_obj_fn(lp,row)) {

fprintf(stderr, "set_obj_fn failed\n");

exit(1);

}

/* constraints

coefficient of qi in constraint j: phi_i(xj) */

for (j=0; j<numcurrpts; j++) {

REAL *p=row+1;

DOUBLE *x=currpts[j];

size_t k,l;

(p++)=1.; / constant term */

for (k=0; k<(size_t)DIMX; k++) { /* linear terms */

*(p++)=x[k];

}

for (k=0; k<(size_t)DIMX; k++) { /* quadratic/bilinear terms */

for (l=0; l<=k; l++) {

*(p++)=(x[k]*x[l]);

}

}

if (!add_constraint(lp,row,(X &&

60 CHAPTER 4. IMPLEMENTATION

x==X)?EQ:(over?GE:LE),x[DIMX+DIMY+constraint_no])) {

fprintf(stderr, "add_constraint failed\n");

exit(1);

}

}

Next, we set up the problem using lp_solve's interfaces. As said in section 3.2.5,
the problem formulation is

max
∑

i,j (
∑

k xkixkj) aij +
∑

i (
∑

k xki) bi + Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≤ F2l(xk)∑
i,j xnewixnewjaij +

∑
i xnewibi + c = F2l(xnew)

for underestimators and

min
∑

i,j (
∑

k xkixkj) aij +
∑

i (
∑

k xki) bi + Nc

s.t. ∀k :
∑

i,j xkixkjaij +
∑

i xkibi + c ≥ F2l(xk)∑
i,j xnewixnewjaij +

∑
i xnewibi + c = F2l(xnew)

for overestimators, where N is the number of points, i.e. N =
∑

k 1, or numcurrpts
in the code. xnew corresponds to the function parameter X.

/* solve the problem */

set_verbose(lp,IMPORTANT);

int ret=solve(lp);

if (ret<0) {

fprintf(stderr, "lp_solve failed\n");

exit(1);

}

if (ret)

printf("lp_solve returned non-zero retval %d\n",ret);

We then solve the problem and check the return value from lp_solve. According
to lp_solve's documentation, a negative return value indicates an out-of-memory
condition, a positive return value for a continuous (not mixed-integer) linear pro-
gram indicates an infeasible, unbounded or degenerate problem or a failure to reach
the optimum solution due to numerical di�culties. We treat the out-of-memory
error as a hard error, and the positive return values by skipping the unusable
estimate constraint.

else {

/* save the result */

get_variables(lp,row);

size_t j=num_estimate_constraints++,i;

estimate_constraint_coeffs=xrealloc(estimate_constraint_coeffs,

num_estimate_constraints*((size_t)(1+DIMX+DIMZ))*sizeof(DOUBLE));

4.3. IMPLEMENTATION OF THE ALGORITHM 61

n_estimated_constraint=xrealloc(n_estimated_constraint,

num_estimate_constraints*sizeof(size_t));

n_estimated_constraint[j]=constraint_no;

is_overestimator=xrealloc(is_overestimator,num_estimate_constraints);

is_overestimator[j]=over;

REAL *p=row;

DOUBLE *q=estimate_constraint_coeffs[j];

/* transform constraints to >=0 form */

if (over) { /* overestimator >= 0 */

for (i=0; i<(size_t)(1+DIMX+DIMZ); i++) *(q++)=*(p++);

} else { /* underestimator <= 0 */

for (i=0; i<(size_t)(1+DIMX+DIMZ); i++) *(q++)=-*(p++);

}

}

If lp_solve was successful, we save the result in the global array of estimate
constraints. In order to have to maintain only one array of constraints, we �ip the
sign of the underestimators so we have only ≥ 0 constraints.

/* clean up */

delete_lp(lp);

}

Finally, we clean up by freeing the problem we allocated.

static void eqconst_optimize_lps(const DOUBLE *X, const int over)

{

size_t i;

for (i=0; i<(size_t)DIMY_EQ; i++) {

eqconst_optimize_lp(X,over,i);

}

}

This internal function generates all underestimate or overestimate constraints for
a new point X, or the initial ones if X is NULL, by calling eqconst_optimize_lp

repeatedly, once for each implicit equality constraint. The parameters X and over

are simply passed through to eqconst_optimize_lp.

/* compute global over-/underestimates of equality constraints around a new

point, or the first estimate if X is NULL */

void compute_global_eq_cst_estimates_around(const DOUBLE *X)

{

#ifndef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

if (X) {

/* fix previous estimates for the new point */

size_t j,k,l;

for (j=0; j<num_estimate_constraints; j++) {

62 CHAPTER 4. IMPLEMENTATION

/* evaluate quadratic polynomial */

DOUBLE *p=estimate_constraint_coeffs[j], *q=p;

DOUBLE z=*(p++); /* constant term */

for (k=0; k<DIMX; k++) { /* linear terms */

z+=*(p++) * X[k];

}

for (k=0; k<DIMX; k++) { /* quadratic/bilinear terms */

for (l=0; l<=k; l++) {

z+=*(p++) * (X[k]*X[l]);

}

}

DOUBLE zactual=X[DIMX+DIMY+n_estimated_constraint[j]];

/* check if the constraint is violated */

if (is_overestimator[j]) {

/* should be an overestimator */

if (z<zactual) { /* oops */

q+=zactual-z; / fix it */

}

} else {

/* -z should be an underestimator */

if (-z>zactual) { /* oops */

q-=zactual+z; / fix it */

}

}

}

}

eqconst_optimize_lps(X,0); /* compute underestimate */

eqconst_optimize_lps(X,1); /* compute overestimate */

#endif

}

This is the main function of eqconst.c. If the option
GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS is set, it simply does nothing.
Otherwise, it will �rst rectify the estimate constraints which are violated by the
new point X (except when computing the �rst estimates), then compute the new
underestimates and overestimates by calling eqconst_optimize_lps twice. It
shall be noted that this also ends up doing nothing if there are no implicit
equality constraints, as the loop in eqconst_optimize_lps will be empty, thus
no estimate constraints will be generated at all, and therefore the rectifying loop
will also be empty.

As described in section 3.2.5, incorrect enclosures are recti�ed by changing
the constant term by the amount needed to make them �t. This is veri�ed by
evaluating the quadratic at the new point, then looking up the original constraint
and the direction of approximation which were used to generate it, looking up the
actual value of the implicit equality constraint at the point (which was evaluated

4.3. IMPLEMENTATION OF THE ALGORITHM 63

during the function evaluation done as the point was retained) and comparing.
A convenience macro

#define compute_1st_global_eq_cst_estimates() \

compute_global_eq_cst_estimates_around(NULL)

is de�ned in the corresponding header �le eqconst.h for the case of computing
the initial estimates. The main reason for this macro is to let the function call be
self-documenting instead of having to pass a magic NULL.

4.3.4 Global GMMs and EM Iteration (gmmem.c)

This �le creates the density models for the global search as described in section
3.2.4. The actual optimization is then done by the NLP optimizer. Implicit equal-
ity constraints are not handled in this �le, they are taken care of by eqconst.c,
which is documented in the previous section.

static const size_t n_steps=10;

This arbitrary constant sets the number of steps in the EM iteration.

size_t num_gaussians;

static DOUBLE *GMM_P;

static DOUBLE (*GMM_L)[DIMX][DIMX];

static DOUBLE (*GMM_Xbar)[DIMX];

The above variables are the parameters of the Gaussian mixture model

p(x) =
M∑

j=1

P (j)
e−

(X−X̄j)
T

C−1
j (X−X̄j)
2

(2π)
N
2

√
det(Cj)

.

They represent M and the arrays of P (j), the Cholesky factors Lj of Cj and X̄j,
respectively.

/* MX = C^-1 X = (L LT)^-1 X = L^-T L^-1 X */

static void compute_MiX(const DOUBLE *X, DOUBLE *MX, size_t idx)

{

size_t i,j;

/* MX := L^-1 X */

for (i=0; i<(size_t)DIMX; i++) {

MX[i]=X[i];

for (j=0; j<i; j++) {

MX[i]-=GMM_L[idx][i][j]*MX[j];

}

MX[i]/=GMM_L[idx][i][i];

64 CHAPTER 4. IMPLEMENTATION

}

/* MX := L^-T X */

/* i is unsigned and will wrap to max size_t after reaching 0 */

for (i=(size_t)DIMX-1; i<(size_t)DIMX; i--) {

for (j=i+1; j<(size_t)DIMX; j++) {

MX[i]-=GMM_L[idx][j][i]*MX[j];

}

MX[i]/=GMM_L[idx][i][i];

}

}

As for the local search, this function computes the matrix-vector product C−1
i X

needed in each term of the GMM by solving two triangular systems of linear
equations. Unlike its equivalent for the local search, this function is not part
of the public interface, it is intended to be called only indirectly through the
functions gmm_prob, gmm_grad and gmm_hess below, which evaluate the GMM's
value, gradient and Hessian, respectively, at a given point.

/* p = exp(-1/2 * (X-Xbar)T M (X-Xbar)) / ((2*pi)^(N/2) * det(L)) */

static DOUBLE gmm_prob_i(const DOUBLE *X, size_t idx)

{

size_t i;

DOUBLE x[DIMX],Mx[DIMX],p=0.;

/* (X-Xbar)T M (X-Xbar) */

for (i=0; i<(size_t)DIMX; i++) {

x[i]=X[i]-GMM_Xbar[idx][i];

}

compute_MiX(x,Mx,idx);

for (i=0; i<(size_t)DIMX; i++) {

p+=x[i]*Mx[i];

}

/* exp(-1/2 * (X-Xbar)T M (X-Xbar)) / ((2*pi)^(N/2)) */

p=exp((-.5)*p)/pow(2.*M_PI,(DOUBLE)DIMX*.5);

/* divide by det(L) */

for (i=0; i<(size_t)DIMX; i++) {

p/=GMM_L[idx][i][i];

}

/* if p is infinite, use our fake infinity instead */

if (isinf(p)) p=INF;

return p;

}

This internal function computes each term of the GMM by its de�nition, given
above. There is one possible source of numerical failure in this function: if p0 =

4.3. IMPLEMENTATION OF THE ALGORITHM 65

xT Mx is a huge negative number, then e−
p0
2 will over�ow. We catch this and just

set p to a huge �nite number (the same one used to represent in�nite bounds in
the NLP optimizers) in that case. This avoids NaNs which would get propagated
throughout the entire GMM in the next EM iteration step, rendering it unusable.

DOUBLE gmm_prob(const DOUBLE *X)

{

DOUBLE p=0.;

size_t idx;

for (idx=0; idx<num_gaussians; idx++) {

p+=gmm_prob_i(X,idx)*GMM_P[idx];

}

return p;

}

This function computes the probability of a point according to the GMM, i.e. the
GMM's value at that point, by its de�nition, given above. We simply loop through
all terms, call gmm_prob_i for each and sum them all up, with the weights given
by GMM_P.

/* g = - (exp(-1/2 * (X-Xbar)T M (X-Xbar)) * M (X-Xbar)) / ((2*pi)^(N/2) *

det(L))

= -p * M (X-Xbar)

We have to sum this over all Gaussians. */

void gmm_grad(const DOUBLE *X, DOUBLE *g)

{

size_t idx,i;

for (i=0; i<(size_t)DIMX; i++) {

g[i]=0.;

}

for (idx=0; idx<num_gaussians; idx++) {

DOUBLE x[DIMX],Mx[DIMX],p;

/* add -p * M (X-Xbar) to g */

for (i=0; i<(size_t)DIMX; i++) {

x[i]=X[i]-GMM_Xbar[idx][i];

}

compute_MiX(x,Mx,idx);

p=gmm_prob_i(X,idx)*GMM_P[idx];

for (i=0; i<(size_t)DIMX; i++) {

g[i]-=p*Mx[i];

}

}

}

This function computes the gradient of the GMM at the given point through the
formula derived in section 2.2.4. The gradients are needed for the NLP optimizers.

66 CHAPTER 4. IMPLEMENTATION

#define DIMH ((DIMX*(DIMX+1))>>1)

/* H = -p * M - g (M (X-Xbar))T

= -p * M + p * (M (X-Xbar)) * (M (X-Xbar))T

= p * (M (X-Xbar) (M (X-Xbar))T - M)

We have to sum this over all Gaussians. */

void gmm_hess(const DOUBLE *X, DOUBLE *H)

{

size_t idx,i,j;

for (i=0; i<(size_t)DIMH; i++) {

H[i]=0.;

}

for (idx=0; idx<num_gaussians; idx++) {

DOUBLE x[DIMX],Mx[DIMX],Mi[DIMX],p;

DOUBLE *ptr=H;

/* compute M (X-Xbar) */

for (i=0; i<(size_t)DIMX; i++) {

x[i]=X[i]-GMM_Xbar[idx][i];

}

compute_MiX(x,Mx,idx);

p=gmm_prob_i(X,idx)*GMM_P[idx];

/* compute Hidx */

for (i=0; i<DIMX; i++) {

for (j=0; j<DIMX; j++) {

x[j]=(j==i)?1.:0.;

}

/* Midx is symmetric, so we'll get away with computing columns instead of

rows */

compute_MiX(x,Mi,idx);

for (j=0; j<=i; j++) {

/* Hidx[i][j] = p * ((Midx (X-Xbar))[i] * (Midx (X-Xbar))[j] -

Midx[i][j]) */

(ptr++)+=p(Mx[i]*Mx[j]-Mi[j]);

}

}

}

}

This function computes the Hessian of the GMM at the given point through the
formula derived in section 2.2.4. As the Hessian is symmetric, only half of the
matrix is actually computed. The Hessians can be used for the NLP optimization
if Ipopt is used.

void build_density_gmm(void)

{

size_t n,curridx;

4.3. IMPLEMENTATION OF THE ALGORITHM 67

DOUBLE (*weights)[numcurrpts];

/* Initialize GMM */

num_gaussians=numcurrpts>>2;

GMM_P=xmalloc(num_gaussians*sizeof(DOUBLE));

GMM_L=xmalloc(num_gaussians*(size_t)DIMX*(size_t)DIMX*sizeof(DOUBLE));

GMM_Xbar=xmalloc(num_gaussians*(size_t)DIMX*sizeof(DOUBLE));

/* Take every 4th point as starting point for a cluster, rotating points.

(The same point is used only every 4 iterations.) */

for (curridx=0, n=((numcurrpts-1)&3); curridx<num_gaussians; curridx++, n+=4)

{

size_t i,j;

/* Default GMM means to starting points. */

memcpy(GMM_Xbar[curridx],currpts[n],(size_t)DIMX*sizeof(DOUBLE));

/* Default GMM priors to 1/num_gaussians. */

GMM_P[curridx]=1./(DOUBLE)num_gaussians;

/* Default GMM covariances to the identity matrix. */

for (i=0; i<(size_t)DIMX; i++) {

for (j=0; j<i; j++) {

GMM_L[curridx][i][j]=0.;

}

GMM_L[curridx][i][i]=1.;

}

}

/* Allocate weight matrix */

weights=xmalloc(num_gaussians*numcurrpts*sizeof(DOUBLE));

/* EM iteration */

for (n=0; n<n_steps; n++) {

size_t p;

/* E Step: compute weights */

for (p=0; p<numcurrpts; p++) {

/* P(j|x)=p(x|j)*P(j)/p(x), p(x)=sum(j) p(x|j)*P(j) */

DOUBLE px=0.;

for (curridx=0; curridx<num_gaussians; curridx++) {

weights[curridx][p]=gmm_prob_i(currpts[p],curridx)*GMM_P[curridx];

px+=weights[curridx][p];

}

if (px<DBL_EPSILON) { /* avoid division by zero, default to

equiprobability */

for (curridx=0; curridx<num_gaussians; curridx++) {

weights[curridx][p]=1./(DOUBLE)num_gaussians;

}

} else {

for (curridx=0; curridx<num_gaussians; curridx++) {

weights[curridx][p]/=px;

}

}

68 CHAPTER 4. IMPLEMENTATION

}

/* M Step: compute new covariances */

for (curridx=0; curridx<num_gaussians; curridx++) {

/* compute the covariance matrix */

size_t i,j,k;

DOUBLE n=0.,real_n;

for (i=0; i<(size_t)DIMX; i++) {

GMM_Xbar[curridx][i]=0.;

}

for (p=0; p<numcurrpts; p++) {

n+=weights[curridx][p];

}

real_n=n;

if (!n) {

n=(DOUBLE)numcurrpts;

for (p=0; p<numcurrpts; p++) {

weights[curridx][p]=1.;

}

}

for (p=0; p<numcurrpts; p++) {

size_t l;

for (l=0; l<(size_t)DIMX; l++) {

GMM_Xbar[curridx][l] += weights[curridx][p]*currpts[p][l];

}

}

for (i=0; i<(size_t)DIMX; i++) {

GMM_Xbar[curridx][i]/=n;

}

for (i=0; i<(size_t)DIMX; i++) {

for (j=0; j<=i; j++) {

GMM_L[curridx][i][j]=0.;

}

}

for (p=0; p<numcurrpts; p++) {

size_t l,m;

for (l=0; l<(size_t)DIMX; l++) {

for (m=0; m<=l; m++) {

GMM_L[curridx][l][m] +=

weights[curridx][p]*(currpts[p][l]-GMM_Xbar[curridx][l])

*(currpts[p][m]-GMM_Xbar[

curridx][m]);

}

}

}

for (i=0; i<(size_t)DIMX; i++) {

for (j=0; j<=i; j++) {

GMM_L[curridx][i][j]/=n;

}

4.3. IMPLEMENTATION OF THE ALGORITHM 69

}

/* compute the regularized Cholesky factorization of the matrix */

for (j=0; j<(size_t)DIMX; j++) {

DOUBLE Ljj;

/* regularize */

if (GMM_L[curridx][j][j]<sqrt(DBL_EPSILON)) {

GMM_L[curridx][j][j]=sqrt(DBL_EPSILON);

}

Ljj=GMM_L[curridx][j][j];

for (i=j+1; i<(size_t)DIMX; i++) {

for (k=i; k<(size_t)DIMX; k++) {

GMM_L[curridx][k][i]-=GMM_L[curridx][k][j]*GMM_L[curridx][i][j]/Ljj;

}

}

for (k=j; k<(size_t)DIMX; k++) {

GMM_L[curridx][k][j]/=sqrt(Ljj);

}

}

/* compute the mixing prior */

GMM_P[curridx]=real_n/(DOUBLE)numcurrpts;

}

}

/* free weight matrix */

free(weights);

/* set the NLP solver to optimize the GMM */

optimization_problem=1;

}

This function creates the GMM. As described in section 3.2.4 and in a comment,
we take every 4th iterate as our starting points, rotating through our iterates, so
the same point is used only once every 4 iterations. We then run a standard
EM iteration as described in section 2.2.5, the number of steps being given by
the constant n_steps at the beginning of the �le. The only deviation from the
theoretical EM iteration procedure is that some regularization is done to avoid
dividing by zero, both when computing probabilities and when computing the
Cholesky factorization. For the probabilities, the divisions would be of 0

0
type,

so we simply fall back to equiprobability if we would divide by zero. For the
Cholesky factorization, we have to regularize the covariance matrix by adding to
the diagonal. We check if Ljj <

√
DBL_EPSILON and set it to

√
DBL_EPSILON in

this case. Finally, we tell our NLP solver interface that the next problem to solve
is a global GMM.

70 CHAPTER 4. IMPLEMENTATION

void free_gmm(void)

{

free(GMM_P);

free(GMM_L);

free(GMM_Xbar);

}

This function frees the memory allocated for the computed GMM once it is no
longer needed.

4.3.5 Evaluation of the Model (eval.c)

This �le contains miscellaneous routines which do not �t into any of the above cat-
egories. Most of them are related to evaluating function values or other properties
of the model, thus the name.

size_t numcurrpts;

DOUBLE (*currpts)[DIMX+DIMY+DIMY_EQ];

These global variables keep track of the number of points we evaluated the black
box constraints at and the coordinates and function values themselves. They are
used all over our implementation.

DOUBLE best_goodness;

This global variable contains the best �goodness� value encountered, which is used
for weighting the local covariance models.

DOUBLE *best_point;

This global keeps a pointer to the �best point� picked by the Pareto �lter, at which
the local search is to be started. Note that this is not necessarily the point with
the best goodness. Our �rst approach was to pick that point as the best point,
which would have amounted to a penalty approach, however that approach turned
out to be too sensitive to the weight given to the constraint violation.

void init_points(void)

{

size_t i;

numcurrpts=NUMINITPTS;

currpts=xmalloc((size_t)NUMINITPTS*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE

));

for (i=0; i<(size_t)NUMINITPTS; i++) {

memcpy(currpts[i],initpts[i],DIMX*sizeof(DOUBLE));

evaluate_F(initpts[i],currpts[i]+DIMX);

}

}

4.3. IMPLEMENTATION OF THE ALGORITHM 71

This initialization function is the �rst routine called as the algorithm starts (after
initializing the pseudorandom number generator). It allocates the currpts array,
stores the user-provided starting points into currpts and evaluates the constraints
at each of them.

Note that the regular evaluate_F callback function is called for the starting
points (as for any other point). There is currently no straightforward API to
provide the function values at the starting points beforehand if they are known,
but the function evaluation callback can be an arbitrary C function and thus it is
possible to provide cached or precomputed function values for the starting points
in the user-provided evaluate_F callback.

void new_point(const DOUBLE *x)

{

size_t i=numcurrpts++;

currpts=xrealloc(currpts,

numcurrpts*((size_t)(DIMX+DIMY+DIMY_EQ))*sizeof(DOUBLE));

memcpy(currpts[i],x,DIMX*sizeof(DOUBLE));

evaluate_F(x,currpts[i]+DIMX);

/* compute global over-/underestimates of equality constraints around the new

point */

compute_global_eq_cst_estimates_around(currpts[i]);

}

This function does the bookkeeping necessary whenever a new point is found. The
point is entered into the currpts array, the constraint functions are evaluated at
the point, and compute_global_eq_cst_estimates_around from eqconst.c is
called to compute the new enclosures for the implicit equality constraints at the
new point and update existing enclosures if they are incorrect at the new point.

DOUBLE get_optimum_x(void)

{

size_t j;

DOUBLE optimum=INFINITY;

#ifdef OPTIMUM_TOL

const DOUBLE tol=OPTIMUM_TOL;

#else

const DOUBLE tol=sqrt(DBL_EPSILON);

#endif

for (j=0; j<numcurrpts; j++) {

DOUBLE cTx=0.;

DOUBLE *x=currpts[j];

size_t i;

for (i=0; i<(size_t)DIMX; i++) {

if (x[i]<xlow[i] || x[i]>xup[i]) {

goto infeasible; /* infeasible point */

}

72 CHAPTER 4. IMPLEMENTATION

}

for (i=0; i<(size_t)DIMY; i++) {

if (x[DIMX+i]<Flow[i]-tol || x[DIMX+i]>Fup[i]+tol) {

goto infeasible; /* infeasible point */

}

}

for (i=0; i<(size_t)DIMY_EQ; i++) {

if (fabs(x[DIMX+DIMY+i])>=tol) {

goto infeasible; /* infeasible point */

}

}

for (i=0; i<(size_t)(DIMX+DIMY); i++) {

cTx+=c[i]*x[i];

}

if (cTx<optimum) {

memcpy(optimum_x,x,(size_t)DIMX*sizeof(DOUBLE));

optimum=cTx;

}

infeasible:;

}

return optimum;

}

This function is called at the end of the algorithm to determine the optimum x
out of the computed points. The optimum point is de�ned as the point among
the ones feasible up to the user-provided OPTIMUM_TOL with the smallest objective
function value. The return value is the function value at the optimal point, the
actual coordinates are stored in the global variable optimum_x.

/* The weights are determined using a penalty function approach, with a penalty

term increasing over time:

min cT x + numcurrpts * constraint_violation */

static DOUBLE get_point_penalty(const DOUBLE *x)

{

DOUBLE penalty=0.;

size_t i;

for (i=0; i<(size_t)DIMX; i++) {

if (x[i]<xlow[i]) {

penalty+=numcurrpts*(xlow[i]-x[i]);

} else if (x[i]>xup[i]) {

penalty+=numcurrpts*(x[i]-xup[i]);

}

}

for (i=0; i<(size_t)DIMY; i++) {

if (x[DIMX+i]<Flow[i]) {

penalty+=numcurrpts*(Flow[i]-x[DIMX+i]);

} else if (x[DIMX+i]>Fup[i]) {

penalty+=numcurrpts*(x[DIMX+i]-Fup[i]);

4.3. IMPLEMENTATION OF THE ALGORITHM 73

}

}

for (i=0; i<(size_t)DIMY_EQ; i++) {

penalty+=(numcurrpts<18?sqrt(numcurrpts/18.):

numcurrpts<77?numcurrpts/18.:

numcurrpts*sqrt(numcurrpts)/158.)*fabs(x[DIMX+DIMY+i]);

}

return penalty;

}

This internal utility function is used when computing the goodness of a point
(used to weight the local covariance models) and as the constraint violation term
for the Pareto �lter in get_best_point. It computes the penalty term e(x) =
Ncv1(x)+κ(N)‖F2(x)‖1, where N is the number of computed points numcurrpts
and cv1, κ and F2 are as de�ned in section 3.2.3.

static DOUBLE get_point_constraint_violation(const DOUBLE *x)

{

DOUBLE penalty=0.;

size_t i;

for (i=0; i<(size_t)DIMX; i++) {

if (x[i]<xlow[i]) {

penalty+=(xlow[i]-x[i]);

} else if (x[i]>xup[i]) {

penalty+=(x[i]-xup[i]);

}

}

for (i=0; i<(size_t)DIMY; i++) {

if (x[DIMX+i]<Flow[i]) {

penalty+=(Flow[i]-x[DIMX+i]);

} else if (x[DIMX+i]>Fup[i]) {

penalty+=(x[DIMX+i]-Fup[i]);

}

}

for (i=0; i<(size_t)DIMY_EQ; i++) {

penalty+=fabs(x[DIMX+DIMY+i]);

}

return penalty;

}

This internal utility function is similar to the above, however it computes the
unweighted constraint violation cv(x) = cv1(x) + ‖F2(x)‖1. It is used for extrap-
olation.

static DOUBLE get_point_cTx(const DOUBLE *x)

{

DOUBLE cTx=0.;

74 CHAPTER 4. IMPLEMENTATION

size_t i;

for (i=0; i<(size_t)(DIMX+DIMY); i++) {

cTx+=c[i]*x[i];

}

return cTx;

}

This internal utility function evaluates the objective function cT
(

x
y

)
(where y =

F1(x)) at a point x.

DOUBLE get_point_goodness(const DOUBLE *x)

{

return get_point_cTx(x)+get_point_penalty(x);

}

This function computes the goodness of a point, i.e. the function p(x) de�ned in
section 3.2.3. It is simply the sum of the objective function and the penalty term.

void get_best_point(void)

{

static unsigned char *used=NULL;

static size_t used_size=0;

/* use the penalty to compute the optimum goodness, it's used for weighting */

DOUBLE cTx[numcurrpts], penalty[numcurrpts];

size_t i,j;

DOUBLE optimum=INFINITY;

best_point=NULL;

/* new points are not used */

used=xrealloc(used,numcurrpts);

memset(used+used_size,0,numcurrpts-used_size);

used_size=numcurrpts;

for (j=0; j<numcurrpts; j++) {

DOUBLE cTx_j=get_point_cTx(currpts[j]);

DOUBLE penalty_j=get_point_penalty(currpts[j]);

DOUBLE cTx_penalty=cTx_j+penalty_j;

cTx[j]=cTx_j;

penalty[j]=penalty_j;

if (cTx_penalty<optimum) {

optimum=cTx_penalty;

}

}

best_goodness=optimum;

/* now pick a "best point" using the filter approach */

unsigned char pareto_optimal[numcurrpts];

size_t num_pareto_points=0;

memset(pareto_optimal,1,numcurrpts);

for (i=0; i<numcurrpts; i++) {

for (j=0; j<numcurrpts; j++) {

4.3. IMPLEMENTATION OF THE ALGORITHM 75

/* if j is strictly better than i, i is not Pareto-optimal */

if (j!=i && pareto_optimal[j] /* avoid unnecessary comparisons */ &&

cTx[j] <= cTx[i] && penalty[j] <= penalty[i] &&

(cTx[j] < cTx[i] || penalty[j] < penalty[i])) {

pareto_optimal[i]=0;

goto dont_count;

}

}

num_pareto_points++;

dont_count:;

}

/* pick a pseudorandom Pareto-optimal point as the best point

pick a later one with a higher probability */

/* find the most recent Pareto-optimal point */

/* i is unsigned and will overflow to ULONG_MAX */

for (i=numcurrpts-1; i<numcurrpts; i--) {

if (pareto_optimal[i]) break;

}

/* if it is not used, pick it with a probability of 1-1/num_pareto_points */

if (used[i] || rand()<(RAND_MAX/(int)num_pareto_points)) {

/* otherwise use equiprobability */

size_t pareto_point_index=((unsigned long long)rand()

*(unsigned long long)num_pareto_points)

/((unsigned long long)(RAND_MAX)+1ull);

for (i=0; i<numcurrpts; i++) {

if (pareto_optimal[i]) {

if (!pareto_point_index--) break;

}

}

}

best_point=currpts[i];

used[i]=1;

printf("Starting local search at x=[");

if (DIMX) {

printf("%lf",best_point[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",best_point[i]);

}

printf("]\n");

return;

}

This function implements the Pareto �lter to pick a �best point� described in
section 3.2.3: we consider the points which are Pareto-optimal for the objective
function f(x) = cT

(
x

F1(x)

)
and the weighted constraint violation e(x) = Ncv1(x) +

κ(N)‖F2(x)‖1 (i.e. the penalty term computed by get_point_penalty) over the
set of computed points xk and pick one of these points with the probabilities

76 CHAPTER 4. IMPLEMENTATION

indicated in the comments and in section 3.2.3. The static array used is used to
keep track of which points we have already started a local search at, so we don't
give the most recent Pareto-optimal point a higher probability if it has already
been used.

void extrapolate_point(void)

{

DOUBLE cTx[numcurrpts], penalty[numcurrpts];

size_t i,j;

for (j=0; j<numcurrpts; j++) {

cTx[j]=get_point_cTx(currpts[j]);

penalty[j]=get_point_constraint_violation(currpts[j]);

}

/* determine the Pareto-optimal points */

unsigned char pareto_optimal[numcurrpts];

size_t num_pareto_points=0;

memset(pareto_optimal,1,numcurrpts);

for (i=0; i<numcurrpts; i++) {

for (j=0; j<numcurrpts; j++) {

/* if j is strictly better than i, i is not Pareto-optimal */

if (j!=i && pareto_optimal[j] /* avoid unnecessary comparisons */ &&

cTx[j] <= cTx[i] && penalty[j] <= penalty[i] &&

(cTx[j] < cTx[i] || penalty[j] < penalty[i])) {

pareto_optimal[i]=0;

goto dont_count;

}

}

num_pareto_points++;

dont_count:;

}

/* throw away the points with excess constraint violation

also throw away the points which are already feasible up to the tolerance,

it's no use getting any better there */

for (i=0; i<numcurrpts; i++) {

if (pareto_optimal[i]

#ifdef OPTIMUM_TOL

&& (penalty[i]>OPTIMUM_TOL*256. || penalty[i]<OPTIMUM_TOL)

#else

&& (penalty[i]>sqrt(DBL_EPSILON)*256. || penalty[i]<sqrt(DBL_EPSILON))

#endif

) {

pareto_optimal[i]=0;

num_pareto_points--;

}

}

/* do a ratio reject to get rid of outliers */

if (num_pareto_points>=3) {

DOUBLE rho[numcurrpts],rho_mean=0.,rho_var=0.;

for (i=0; i<numcurrpts; i++) {

4.3. IMPLEMENTATION OF THE ALGORITHM 77

if (pareto_optimal[i]) {

/* compute rho[i] */

DOUBLE d_i_NNi=INFINITY, d_NNi_NNNNi=INFINITY;

size_t NNi;

/* find nearest neighbor of i and distance */

for (j=0; j<numcurrpts; j++) {

if (j!=i && pareto_optimal[j]) {

DOUBLE d_i_j=0;

size_t k;

for (k=0; k<(size_t)DIMX; k++) {

d_i_j+=(currpts[j][k]-currpts[i][k])*(currpts[j][k]-currpts[i][k])

;

}

if (d_i_j<d_i_NNi) {

d_i_NNi=d_i_j;

NNi=j;

}

}

}

/* find nearest neighbor of NNi and distance */

for (j=0; j<numcurrpts; j++) {

if (j!=i && j!=NNi && pareto_optimal[j]) {

DOUBLE d_NNi_j=0;

size_t k;

for (k=0; k<(size_t)DIMX; k++) {

d_NNi_j+=(currpts[j][k]-currpts[NNi][k])*(currpts[j][k]-currpts[NN

i][k]);

}

if (d_NNi_j<d_NNi_NNNNi) {

d_NNi_NNNNi=d_NNi_j;

}

}

}

/* rho[i] is the ratio */

rho[i]=d_i_NNi/d_NNi_NNNNi;

rho_mean+=rho[i];

}

}

/* compute mean and variance */

rho_mean/=num_pareto_points;

for (i=0; i<numcurrpts; i++) {

if (pareto_optimal[i]) {

rho_var+=(rho[i]-rho_mean)*(rho[i]-rho_mean);

}

}

rho_var/=num_pareto_points;

/* ratio-reject cutoff = mean + 3*stddev */

DOUBLE cutoff=rho_mean+3*sqrt(rho_var);

/* now reject the outliers */

78 CHAPTER 4. IMPLEMENTATION

for (i=0; i<numcurrpts; i++) {

if (pareto_optimal[i] && rho[i]>cutoff) {

printf("Extrapolation: outlier cv=%lf, x=[",penalty[i]);

if (DIMX) {

printf("%lf",currpts[i][0]);

}

for (j=1; j<(size_t)DIMX; j++) {

printf(",%lf",currpts[i][j]);

}

printf("] rejected (rho=%lf>%lf)\n",rho[i],cutoff);

pareto_optimal[i]=0;

num_pareto_points--;

}

}

}

/* compute the cubic regression and extrapolate to 0 using Cramer's rule */

DOUBLE S0=0.,S1=0.,S2=0.,S3=0.,S4=0.,S5=0.,S6=0.;

DOUBLE Sx0[DIMX]={},Sx1[DIMX]={},Sx2[DIMX]={},Sx3[DIMX]={};

for (i=0; i<numcurrpts; i++) {

if (pareto_optimal[i]) {

DOUBLE cv=penalty[i];

DOUBLE cvn=cv;

DOUBLE *x=currpts[i];

DOUBLE cvxn[DIMX];

printf("Extrapolation considering cv=%lf, x=[",cv);

if (DIMX) {

printf("%lf",x[0]);

}

for (j=1; j<(size_t)DIMX; j++) {

printf(",%lf",x[j]);

}

printf("]\n");

S0+=1.;

for (j=0; j<DIMX; j++) Sx0[j]+=x[j];

S1+=cv;

for (j=0; j<DIMX; j++) {

cvxn[j]=cv*x[j];

Sx1[j]+=cvxn[j];

}

cvn*=cv;

S2+=cvn;

for (j=0; j<DIMX; j++) {

cvxn[j]*=cv;

Sx2[j]+=cvxn[j];

}

cvn*=cv;

S3+=cvn;

for (j=0; j<DIMX; j++) {

cvxn[j]*=cv;

4.3. IMPLEMENTATION OF THE ALGORITHM 79

Sx3[j]+=cvxn[j];

}

cvn*=cv;

S4+=cvn;

cvn*=cv;

S5+=cvn;

cvn*=cv;

S6+=cvn;

}

}

DOUBLE d1=S6*S4*S2+S5*S3*S4+S4*S5*S3-S4*S4*S4-S3*S3*S6-S2*S5*S5;

DOUBLE d2=S6*S4*S1+S5*S3*S3+S4*S5*S2-S3*S4*S4-S2*S3*S6-S1*S5*S5;

DOUBLE d3=S6*S3*S1+S5*S2*S3+S4*S4*S2-S3*S3*S4-S2*S2*S6-S1*S4*S5;

DOUBLE d4=S5*S3*S1+S4*S2*S3+S3*S4*S2-S3*S3*S3-S2*S2*S5-S1*S4*S4;

DOUBLE D=S0*d1-S1*d2+S2*d3-S3*d4;

if (D<DBL_EPSILON*128. && D>-DBL_EPSILON*128.) {

printf("Extrapolation matrix too ill-conditioned (D=%lg)\n",D);

return;

}

for (j=0; j<DIMX; j++) {

optimum_x[j]=(Sx0[j]*d1-Sx1[j]*d2+Sx2[j]*d3-Sx3[j]*d4)/D;

}

printf("Extrapolation found x=[");

if (DIMX) {

printf("%lf",optimum_x[0]);

}

for (i=1; i<(size_t)DIMX; i++) {

printf(",%lf",optimum_x[i]);

}

printf("]\n");

new_point(optimum_x);

}

This function implements the extrapolation step described in section 3.2.1. We
consider only the points which are Pareto-optimal for the objective function f(x)
and the constraint violation cv(x) over the set of computed points. Next, we
throw away the points which are already feasible up to OPTIMUM_TOL, which need
no further extrapolation towards smaller constraint violations, as well as the points
with cv(x) > 256 OPTIMUM_TOL, which are too far from feasibility to be relevant.
(The factor 256 is arbitrary and the result of a few experiments, it might be
bene�cial to tune it further.) We then apply the ratio-reject procedure from data
analysis (see section 2.3) to get rid of outliers. The goal of this procedure is to
obtain a set of points which should approximate the theoretical Pareto curve, i.e.
the set of Pareto-optimal points over all x ∈ [xl, xu], as closely as possible. Finally,
we lay a cubic regression curve through the remaining points using the formulas
derived in section 2.4 and use this to extrapolate cv(x) towards zero. We check

80 CHAPTER 4. IMPLEMENTATION

if the determinant is reasonably large to avoid numerical di�culties or outright
division by zero. If the extrapolation was successful, i.e. if we have had enough
points and a nonsingular extrapolation system, we evaluate the constraints at the
extrapolated point to verify actual feasibility.

4.4 Interface to Third-Party NLP Libraries

Our interface to the third-party NLP optimizer libraries serves two purposes:

• abstracting the actual optimizer used, in order to support plugging in either
DONLP2 or Ipopt and

• implementing the callbacks required by those optimizers.

The optimizer abstraction is contained in the header �le nlpopt.h and the wrapper
for the respective optimizer (donlp2.h or ipopt.h). The callbacks are contained
in userfu.c for DONLP2 and in ipopt.c for Ipopt.

Adding support for another NLP optimizer requires both implementing the
abstraction and porting or wrapping the callbacks.

4.4.1 Optimizer Abstraction (nlpopt.h)

This �le is a thin wrapper around the optimizers, which makes sure other �les need
not know which NLP optimizer is in use. Its main use is to include the wrapper
for the respective optimizer:

#ifdef USE_IPOPT

#include "ipopt.h"

#else // default to donlp2

#include "donlp2.h"

#endif

It also declares global variables common to both sets of optimizer callbacks:

#include "probldim.h"

extern DOUBLE optimum_x[DIMX];

extern int optimization_problem;

extern int ignore_constraints;

4.4.2 DONLP2 Wrapper and Callbacks (donlp2.h, userfu.c)

The DONLP2 wrapper donlp2.h contains the DONLP2-speci�c parts of the op-
timizer abstraction.

#include "o8para.h"

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 81

We start by including the header �le provided by DONLP2 itself, which declares
the types used by DONLP2, such as DOUBLE and REAL.

#define INF 1.e20

This macro corresponds to the large number used to represent in�nity within
DONLP2.

void donlp2(void);

extern REAL optite;

#define solve_nlp() (donlp2(), (int)optite+11)

The solve_nlp function is the primary abstraction for the optimizer which is being
used. For DONLP2, the implementation is a simple macro which calls donlp2 and
translates the return code, which DONLP2 stores into the global variable optite,
into a C-style return value. The remainder of the work, such as the choice of
problem to compute function values and gradients for, is done in the callbacks,
because DONLP2 calls the callback functions by name, and can therefore only
work with a single set of callbacks.

The �le userfu.c contains the implementation of the callback functions for
DONLP2, which represent the two types of optimization models used during our
algorithm: local surrogate models and global density minimization. The interfaces
these callbacks are implementing can be found in more detail in the documentation
included with DONLP2.

DOUBLE optimum_x[DIMX];

int optimization_problem;

int ignore_constraints;

The global variable optimization_problem controls which type of problem is to
be solved next. It is 0 for the local surrogate model

min cT

(
x
y1

)

s.t. klow ≤ k

x
z
y1

0

 ≤ kup

z = (x11 x12 x22 x13 x23 x33 . . . x1m . . . xmm)T

xl ≤ x ≤ xu

Fl ≤ y ≤ Fu

zl ≤ z ≤ zu

82 CHAPTER 4. IMPLEMENTATION

(see section 3.2.3) and 1 for the global density model

min
∑M

j=1 P (j) e−
(X−X̄j)

T
C−1

j (X−X̄j)
2

(2π)
N
2
√

det(Cj)

s.t. xl ≤ x ≤ xu

F 2(x) ≥ −τ
F 2(x) ≤ τ

(see sections 3.2.4, 3.2.5 and 2.2.4).
The global variable ignore_constraints disables the constraints containing F 2(x)
or F 2(x) in the global search, leaving only the bound constraints. This is used to
�nd a suitable starting point for the fully constrained global search. The result
is stored in the variable optimum_x. Only the x coordinates are retained. The
approximation for y1 obtained from the local search is discarded (as is the infor-
mation that the approximation for y2 is always forced to zero by the substitution
performed in section 3.2.3), instead the actual F (x) is evaluated at the new point.

/* **

*/

/* donlp2-intv size initialization

*/

/* **

*/

void user_init_size(void) {

#define X extern

#include "o8comm.h"

#include "o8fint.h"

#include "o8cons.h"

#undef X

/* problem dimension n = dim(x), nlin=number of linear constraints

nonlin = number of nonlinear constraints */

switch (optimization_problem) {

case 0:

n = DIMX+DIMZ+DIMY;

nlin = 0;

nonlin = 1+DIMZ;

break;

case 1:

n = DIMX;

nlin = 0;

nonlin = ignore_constraints ? 0 : num_estimate_constraints;

break;

}

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 83

iterma = 4000;

nstep = 20;

}

This callback tells DONLP2 the dimensions of the problems we want to solve:
the number of variables n, the number of linear constraints (other than bound
constraints) nlin and the number of nonlinear constraints nonlin, as well as
some additional parameters, for which we used the numbers used in the DONLP2
examples: the maximum number of iterations to perform iterma and the number
of tries in the backtracking allowed nstep.

/* **

*/

/* donlp2-intv standard setup

*/

/* **

*/

void user_init(void) {

#define X extern

#include "o8comm.h"

#include "o8cons.h"

#undef X

INTEGER i,j,k,l;

DOUBLE optimum=INFINITY;

/* name is ident of the example/user and can be set at users will */

/* the first static character must be alphabetic. 40 characters maximum */

strcpy(name,"surrogate");

/* x is initial guess and also holds the current solution */

/* problem dimension n = dim(x), nlin=number of linear constraints

nonlin = number of nonlinear constraints */

analyt = TRUE;

epsdif = 1.e-16; /* gradients exact to machine precision */

/* if you want numerical differentiation being done by donlp2 then:*/

/* epsfcn = 1.e-16; */ /* function values exact to machine precision */

/* taubnd = 5.e-6; */

/* bounds may be violated at most by taubnd in finite differencing */

/* bloc = TRUE; */

/* if one wants to evaluate all functions in an independent process */

/* difftype = 3; */ /* the most accurate and most expensive choice */

nreset = n;

84 CHAPTER 4. IMPLEMENTATION

del0 = 0.2e0;

tau0 = 1.e0;

tau = 0.1e0;

big = INF;

switch (optimization_problem) {

case 0:

/* starting value: best point */

for (i = 1 ; i <= DIMX ; i++) {

x[i] = best_point[i-1];

}

for (j=1; j<=DIMX; j++) {

for (k=1; k<=j; k++) {

x[i++] = x[j]*x[k];

}

}

for (; i <= DIMX+DIMZ+DIMY ; i++) {

x[i] = best_point[i-(DIMZ+1)];

}

/* set lower and upper bounds */

/* x */

for (i = 1 ; i <= DIMX ; i++) {

low[i] = xlow[i-1];

up[i] = xup[i-1];

}

/* z */

for (j=0; j<DIMX; j++) {

for (k=0; k<=j; k++) {

/* interval multiplication [xlow[j],xup[j]]*[xlow[k],xup[k]] */

DOUBLE

bounds[4]={xlow[j]*xlow[k],xlow[j]*xup[k],xup[j]*xlow[k],

xup[j]*xup[k]};

DOUBLE zlow=*bounds, zup=*bounds;

for (l=1; l<4; l++) {

if (bounds[l]<zlow) zlow=bounds[l];

if (bounds[l]>zup) zup=bounds[l];

}

low[i] = zlow;

up[i++] = zup;

}

}

/* y */

for (; i <= DIMX+DIMZ+DIMY ; i++) {

low[i] = Flow[i-(DIMX+DIMZ+1)];

up[i] = Fup[i-(DIMX+DIMZ+1)];

}

/* covariance model interval constraint */

low[i] = klow;

up[i++] = kup;

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 85

/* equality constraints */

for (j=0; j<DIMZ; j++) {

low[i] = 0.;

up[i++] = 0.;

}

break;

case 1:

if (ignore_constraints) {

/* starting value: center of box */

for (i = 1 ; i <= DIMX ; i++) {

x[i] = (xlow[i-1] + xup[i-1]) * .5;

}

} else {

/* starting value: unconstrained minimum */

for (i = 1 ; i <= DIMX ; i++) {

x[i] = optimum_x[i-1];

}

}

/* set lower and upper bounds */

for (i = 1 ; i <= DIMX ; i++) {

low[i] = xlow[i-1];

up[i] = xup[i-1];

}

if (!ignore_constraints) {

/* estimate constraints */

for (j=0; j<(INTEGER)num_estimate_constraints; j++) {

low[i] = -ESTIMATE_CONSTRAINT_TOL;

up[i++] = INF;

}

}

break;

}

silent = TRUE;

return;

}

This is the DONLP2 initialization callback. We set the starting values, bounds
and some parameters. In particular, we indicate that we have analytically com-
puted gradients and we set DONLP2 to silent mode because otherwise the many
DONLP2 invocations lead to way too much debugging output.

/* **

*/

/* special setup

*/

86 CHAPTER 4. IMPLEMENTATION

/* **

*/

void setup(void) {

#define X extern

#include "o8comm.h"

#undef X

te0=TRUE;

/* enforce valid delmin */

if (!optimization_problem && delmin + delmin >= kup - klow)

delmin = (kup - klow) * .499;

return;

}

This callback allows overriding some DONLP2 default settings. DONLP2 �rst calls
user_init, then sets some defaults based on that, then allows setup to override
them. We set te0 to TRUE, which means to log a line for each iteration step,
however this line is not output to stdout due to silent mode being used, it is only
logged to a �le in the case of a failure, in order to allow debugging. For the local
search, we also enforce a valid setting of the delmin variable: for a constraint with
distinct lower and upper bounds kl and ku, there must not be a point k satisfying
both k − kl ≤ delmin and ku − k ≤ delmin. It follows that delmin < ku−kl

2
must

hold. The default setting does not always satisfy this for our covariance constraint,
so we adjust delmin if the property does not hold.

/* **

*/

/* the user may add additional computations using the computed solution here

*/

/* **

*/

void solchk(void) {

#define X extern

#include "o8comm.h"

#undef X

#include "o8cons.h"

INTEGER i;

for (i=0; i<DIMX; i++)

optimum_x[i]=x[i+1];

return;

}

This callback is called by DONLP2 once a solution has been found. We save the
result to the global optimum_x.

/* **

*/

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 87

/* objective function

*/

/* **

*/

void ef(DOUBLE x[],DOUBLE *fx) {

#define X extern

#include "o8fuco.h"

#undef X

INTEGER i;

DOUBLE f=0.;

switch (optimization_problem) {

case 0:

for (i=0; i<DIMX; i++) {

f += c[i]*x[i+1];

}

for (i=0; i<DIMY; i++) {

f += c[i+DIMX]*x[i+(DIMX+DIMZ+1)];

}

*fx = f;

break;

case 1:

*fx = gmm_prob(x+1);

break;

}

return;

}

This callback implements the objective function. One caveat with DONLP2 is
that it has been ported from FORTRAN, which uses 1-based arrays, and thus it
uses 1 as the �rst array index, not 0 as would be expected in C. Otherwise, the
implementation is straightforward.

/* **

*/

/* gradient of objective function

*/

/* **

*/

void egradf(DOUBLE x[],DOUBLE gradf[]) {

#define X extern

#include "o8fuco.h"

#undef X

INTEGER j;

88 CHAPTER 4. IMPLEMENTATION

switch (optimization_problem) {

case 0:

for (j=0; j<DIMX; j++) {

gradf[j+1] = c[j];

}

for (; j<DIMX+DIMZ; j++) {

gradf[j+1] = 0.;

}

for (j=0; j<DIMY; j++) {

gradf[j+(DIMX+DIMZ+1)] = c[j+DIMX];

}

break;

case 1:

gmm_grad(x+1,gradf+1);

break;

}

return;

}

Likewise, this callback implements the gradient of the objective function.

/* **

*/

/* compute the i-th equality constaint, value is hxi

*/

/* **

*/

void econ(INTEGER type ,INTEGER liste[], DOUBLE x[],DOUBLE con[],

LOGICAL err[]) {

#define X extern

#include "o8fuco.h"

#undef X

INTEGER i,j,k,l;

DOUBLE z;

INTEGER liste_loc_size;

switch (optimization_problem) {

case 0:

liste_loc_size = DIMZ+1 ;

break;

case 1:

liste_loc_size = ignore_constraints ? 0 : (INTEGER)

num_estimate_constraints ;

break;

}

INTEGER liste_loc[liste_loc_size+1];

/* if type != 1 only a selection is evaluated the indices being taken from */

/* liste. since we have no evaluation errors here err is never touched */

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 89

if (type == 1)

{

liste_loc[0] = liste_loc_size ;

for (i = 1 ; i<=liste_loc[0] ; i++) { liste_loc[i] = i ; }

}

else

{

liste_loc[0] = liste[0] ;

for (i = 1 ; i<=liste[0] ; i++) { liste_loc[i] = liste[i];}

}

for (j = 1 ; j <= liste_loc[0] ; j++)

{

i = liste_loc[j] ;

switch (optimization_problem) {

case 0:

if (i==1) {

/* compute (X-Xbar)T M (X-Xbar) */

DOUBLE X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ];

z=0.;

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

X[k]=x[k+1]-Xbar[k];

}

for (; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

X[k]=-Xbar[k];

}

compute_MX(X,MX);

for (k=0; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

z+=X[k]*MX[k];

}

con[1]=z;

} else {

/* compute zi-xk*xl */

k=0;

l=i-2;

while (l>k) {

k++;

l-=k;

}

con[i]=x[i+(DIMX-1)]-x[k+1]*x[l+1];

}

break;

case 1:

{

/* evaluate quadratic polynomial */

DOUBLE *p=estimate_constraint_coeffs[i-1];

z=*(p++); /* constant term */

for (k=1; k<=DIMX; k++) { /* linear terms */

90 CHAPTER 4. IMPLEMENTATION

z+=*(p++) * x[k];

}

for (k=1; k<=DIMX; k++) { /* quadratic/bilinear terms */

for (l=1; l<=k; l++) {

z+=*(p++) * (x[k]*x[l]);

}

}

con[i]=z;

}

break;

}

}

return;

}

This callback implements the constraints. As indicated in a comment, DONLP2
can request all (type = 1) or only some (type 6= 1) of the constraints. In the
latter case, liste contains the list of needed constraints. We construct a full list
in liste_loc if we have to evaluate all constraints, otherwise we copy liste to
liste_loc. We then evaluate the constraints contained in liste_loc.

/* **

*/

/* compute the gradient of the i-th equality constraint

*/

/* **

*/

void econgrad(INTEGER liste[] ,INTEGER shift , DOUBLE x[],

DOUBLE **grad) {

#define X extern

#include "o8fuco.h"

#undef X

INTEGER i,j,k,l;

DOUBLE z;

INTEGER liste_loc_size;

switch (optimization_problem) {

case 0:

liste_loc_size = DIMZ+1 ;

break;

case 1:

liste_loc_size = ignore_constraints ? 0 : (INTEGER)

num_estimate_constraints ;

break;

}

INTEGER liste_loc[liste_loc_size+1];

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 91

liste_loc[0] = liste[0] ;

for (i = 1 ; i<=liste_loc[0] ; i++) { liste_loc[i] = liste[i];}

for (j = 1 ; j <= liste_loc[0] ; j++)

{

i = liste_loc[j] ;

switch (optimization_problem) {

case 0:

if (i==1) {

/* compute ((X-Xbar)T M (X-Xbar))' = 2 M (X-Xbar) */

DOUBLE X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ];

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

X[k]=x[k+1]-Xbar[k];

}

for (; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

X[k]=-Xbar[k];

}

compute_MX(X,MX);

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

z=MX[k];

grad[k+1][i+shift] = 2.*z;

}

} else {

for (k=1; k<=DIMX+DIMZ+DIMY; k++) {

grad[k][i+shift] = 0.e0;

}

/* compute (zi-xk*xl)' = ezi - xl exk - xk exl */

k=0;

l=i-2;

while (l>k) {

k++;

l-=k;

}

grad[i+(DIMX-1)][i+shift] = 1.;

grad[k+1][i+shift] -= x[l+1];

grad[l+1][i+shift] -= x[k+1];

}

break;

case 1:

{

/* evaluate gradient of the quadratic polynomial */

DOUBLE *p=estimate_constraint_coeffs[i-1]+1; /* skip constant term

*/

for (k=1; k<=DIMX; k++) { /* linear terms (constant derivatives) */

grad[k][i+shift]=*(p++);

}

for (k=1; k<=DIMX; k++) { /* quadratic/bilinear terms (linear

derivatives) */

for (l=1; l<=k; l++) {

92 CHAPTER 4. IMPLEMENTATION

grad[k][i+shift]+=*p * x[l];

grad[l][i+shift]+=*(p++) * x[k];

/* If k==l, then this is grad[k][i+shift]+=2 * *(p++) * x[k],

which is correct, since d(xk^2)/dxk=2 xk.

For the bilinear terms, d(xk*xl)/dxk=xl, d(xk*xl)/dxl=xk. */

}

}

}

break;

}

}

return;

}

Likewise, this callback evaluates the Jacobian of the constraints, or the gradients
listed in the parameter liste.

/* **

*/

/* user functions (if bloc == TRUE)

*/

/* **

*/

void eval_extern(INTEGER mode) {

#define X extern

#include "o8comm.h"

#include "o8fint.h"

#undef X

#include "o8cons.h"

return;

}

This callback does nothing because it is not actually used, as we don't use the
bloc mode.

4.4.3 Ipopt Wrapper and Callbacks (ipopt.h, ipopt.c)

The Ipopt wrapper ipopt.h contains the Ipopt-speci�c parts of the optimizer
abstraction.

#include "IpStdCInterface.h"

We start by including the header �le provided by Ipopt itself, which declares the
types and functions used by Ipopt, such as Number.

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 93

#define DOUBLE Number

This macro abstracts the fact that Ipopt uses Number where DONLP2 uses DOUBLE.
(Internally, both default to the builtin double type, but we try not to make use
of this fact for higher portability.)

#define INF 2.e19

This macro corresponds to the large number used to represent in�nity within Ipopt.

int solve_nlp(void);

The solve_nlp function is the primary abstraction for the optimizer which is be-
ing used. For Ipopt, the implementation is an actual function which sets up the
problem structure and passes the correct function pointers to Ipopt depending on
which optimization problem is to be solved. Being a C++ program, the current
version of Ipopt uses a much more object-oriented approach (even in the C inter-
face) than DONLP2, which is ported from FORTRAN: a problem is represented
as a structure, and callbacks are called through function pointers, not by name as
in DONLP2.

The �le ipopt.c contains the implementation of the callback functions for
Ipopt, which represent the two types of optimization models used during our al-
gorithm: local surrogate models and global density minimization. They work very
similarly to their counterparts for DONLP2, but implement di�erent interfaces,
which can be found more in detail in the documentation included with Ipopt.

#undef USE_BFGS /* instead of symbolic Hessian */

This option serves mainly for testing purposes. Ipopt can use analytically com-
puted Hessians or it can approximate them using limited-memory BFGS. De�ning
USE_BFGS turns o� the analytical Hessians and tells Ipopt to use the limited-
memory BFGS approach instead. Use of this option is not recommended.

int ignore_constraints;

DOUBLE optimum_x[DIMX];

int optimization_problem;

These global variables work exactly the same as their equivalents in userfu.c for
DONLP2.

/* The number of nonzero entries in the lower triangular part of a full

symmetric matrix. */

#define FULL_SYMM_MAT(n) (((n)*((n)+1))>>1)

94 CHAPTER 4. IMPLEMENTATION

This utility macro is used to compute the sizes of the analytical Hessians.

static Bool eval_f_0(Index n, Number* x, Bool new_x,

Number* obj_value, UserDataPtr user_data)

{

Index i;

Number f=0.;

for (i=0; i<DIMX; i++) {

f+=c[i]*x[i];

}

for (i=0; i<DIMY; i++) {

f+=c[i+DIMX]*x[i+(DIMX+DIMZ)];

}

*obj_value=f;

return TRUE;

}

This callback evaluates the objective function for the local search. As Ipopt calls
callbacks by pointer and not by name, we can use separate callbacks for the dif-
ferent problems. We make use of this possibility.

static Bool eval_grad_f_0(Index n, Number* x, Bool new_x,

Number* grad_f, UserDataPtr user_data)

{

Index j;

for (j=0; j<DIMX; j++) {

grad_f[j]=c[j];

}

for (; j<DIMX+DIMZ; j++) {

grad_f[j]=0.;

}

for (j=0; j<DIMY; j++) {

grad_f[j+(DIMX+DIMZ)]=c[j+DIMX];

}

return TRUE;

}

This callback evaluates the gradient of the objective function for the local search.

static Bool eval_g_0(Index n, Number* x, Bool new_x,

Index m, Number* g, UserDataPtr user_data)

{

Index i,k,l;

/* compute (X-Xbar)T M (X-Xbar) */

Number X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ];

Number z=0.;

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 95

X[k]=x[k]-Xbar[k];

}

for (; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

X[k]=-Xbar[k];

}

compute_MX(X,MX);

for (k=0; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

z+=X[k]*MX[k];

}

*g=z;

for (i=1; i<=DIMZ; i++) {

/* compute zi-xk*xl */

k=0;

l=i-1;

while (l>k) {

k++;

l-=k;

}

g[i]=x[i+(DIMX-1)]-x[k]*x[l];

}

return TRUE;

}

This callback evaluates the constraints for the local search.

static Bool eval_jac_g_0(Index n, Number *x, Bool new_x,

Index m, Index nele_jac,

Index *iRow, Index *jCol, Number *values,

UserDataPtr user_data)

{

if (!values) { /* sparsity structure */

Index i=1,j,k,l;

/* first row full */

for (j=0; j<(DIMX+DIMZ+DIMY); j++) {

iRow[j]=0; jCol[j]=j;

}

/* equality constraints */

for (k=0; k<DIMX; k++) {

for (l=0; l<k; l++) { /* bilinear terms in z */

iRow[j]=i; jCol[j++]=l;

iRow[j]=i; jCol[j++]=k;

iRow[j]=i; jCol[j++]=(i++)+(DIMX-1);

}

/* quadratic terms in z */

iRow[j]=i; jCol[j++]=k;

iRow[j]=i; jCol[j++]=(i++)+(DIMX-1);

}

} else { /* values */

96 CHAPTER 4. IMPLEMENTATION

Index j=0,k,l;

/* compute ((X-Xbar)T M (X-Xbar))' = 2 M (X-Xbar) */

Number X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ];

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

X[k]=x[k]-Xbar[k];

}

for (; k<DIMX+DIMZ+DIMY+DIMY_EQ; k++) {

X[k]=-Xbar[k];

}

compute_MX(X,MX);

for (k=0; k<DIMX+DIMZ+DIMY; k++) {

Number z=MX[k];

values[j++]=2.*z; /* Jac[0][j] */

}

/* equality constraints */

for (k=0; k<DIMX; k++) {

for (l=0; l<k; l++) { /* bilinear terms in z */

values[j++]=-x[k]; /* Jac[i][k] */

values[j++]=-x[l]; /* Jac[i][l] */

values[j++]=1.; /* Jac[i][i+(DIMX-1)] */

}

/* quadratic terms in z */

values[j++]=-2.*x[k]; /* Jac[i][k] */

values[j++]=1.; /* Jac[i][i+(DIMX-1)] */

}

}

return TRUE;

}

This callback evaluates the Jacobian of the constraints for the local search. Unlike
DONLP2, Ipopt uses sparse matrix arithmetic, thus the Jacobian is represented as
a sparse matrix. Ipopt requests the sparsity structure at the beginning, then only
the values contained in the sparsity structure shall be returned at each request.

static Bool eval_h_0(Index n, Number *x, Bool new_x, Number obj_factor,

Index m, Number *lambda, Bool new_lambda,

Index nele_hess, Index *iRow, Index *jCol,

Number *values, UserDataPtr user_data)

{

#ifdef USE_BFGS

return FALSE;

#else

if (!values) { /* sparsity structure */

/* full Hessian */

Index k=0,i,j;

for (i=0; i<DIMX+DIMZ+DIMY; i++) {

for (j=0; j<=i; j++) {

iRow[k]=i; jCol[k++]=j;

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 97

}

}

} else { /* values */

/* The objective function is linear, skip it. */

/* first constraint: Hessian = 2 M */

Index k=0,i,j,l;

Number X[DIMX+DIMZ+DIMY+DIMY_EQ], MX[DIMX+DIMZ+DIMY+DIMY_EQ];

for (i=0; i<DIMX+DIMZ+DIMY; i++) {

for (l=0; l<DIMX+DIMZ+DIMY+DIMY_EQ; l++) {

X[l]=(l==i)?(2.*(*lambda)):0.;

}

/* M is symmetric, so we'll get away with computing columns instead of

rows */

compute_MX(X,MX);

for (j=0; j<=i; j++) {

values[k++]=MX[j];

}

}

/* equality constraints */

j=0;

for (k=0; k<DIMX; k++) {

for (l=0; l<k; l++) { /* bilinear terms in z */

values[j]-=lambda[j+1];

j++;

}

/* quadratic terms in z */

values[j]-=2.*lambda[j+1];

j++;

}

}

return TRUE;

#endif

}

This callback evaluates the Hessian of the Lagrangian for the local search. More
precisely, Ipopt uses a generalized Lagrangian where the objective function is also
weighted with a coe�cient obj_factor, which allows a Hessian of the constraints
only to be requested when needed. Like the Jacobians, the Hessians are also
represented as sparse matrices, however we cannot make use of this fact, our
sparsity structure is always full.

static Bool eval_f_1(Index n, Number* x, Bool new_x,

Number* obj_value, UserDataPtr user_data)

{

*obj_value=gmm_prob(x);

return TRUE;

}

This callback evaluates the objective function for the global search.

98 CHAPTER 4. IMPLEMENTATION

static Bool eval_grad_f_1(Index n, Number* x, Bool new_x,

Number* grad_f, UserDataPtr user_data)

{

gmm_grad(x,grad_f);

return TRUE;

}

This callback evaluates the gradient of the objective function for the global search.

static Bool eval_g_1(Index n, Number* x, Bool new_x,

Index m, Number* g, UserDataPtr user_data)

{

if (!ignore_constraints) {

Index i,k,l;

for (i=0; i<(Index)num_estimate_constraints; i++) {

/* evaluate quadratic polynomial */

Number *p=estimate_constraint_coeffs[i];

Number z=*(p++); /* constant term */

for (k=0; k<DIMX; k++) { /* linear terms */

z+=*(p++) * x[k];

}

for (k=0; k<DIMX; k++) { /* quadratic/bilinear terms */

for (l=0; l<=k; l++) {

z+=*(p++) * (x[k]*x[l]);

}

}

g[i]=z;

}

}

return TRUE;

}

This callback evaluates the constraints for the global search. Obviously, in the case
where ignore_constraints is set, i.e. where we ignore all non-bound constraints,
there is nothing to do.

static Bool eval_jac_g_1(Index n, Number *x, Bool new_x,

Index m, Index nele_jac,

Index *iRow, Index *jCol, Number *values,

UserDataPtr user_data)

{

if (!ignore_constraints) {

if (!values) { /* sparsity structure */

/* full Jacobian */

Index k=0,i,j;

for (i=0; i<(Index)num_estimate_constraints; i++) {

for (j=0; j<DIMX; j++) {

iRow[k]=i; jCol[k++]=j;

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 99

}

}

} else { /* values */

Index i,k,l;

for (i=0; i<(Index)num_estimate_constraints; i++) {

/* evaluate gradient of the quadratic polynomial */

Number *p=estimate_constraint_coeffs[i]+1; /* skip constant term */

Number *grad=values+i*DIMX;

for (k=0; k<DIMX; k++) { /* linear terms (constant derivatives) */

grad[k]=*(p++);

}

for (k=0; k<DIMX; k++) { /* quadratic/bilinear terms (linear

derivatives) */

for (l=0; l<=k; l++) {

grad[k]+=*p * x[l];

grad[l]+=*(p++) * x[k];

/* If k==l, then this is grad[k][i+shift]+=2 * *(p++) * x[k],

which is correct, since d(xk^2)/dxk=2 xk.

For the bilinear terms, d(xk*xl)/dxk=xl, d(xk*xl)/dxl=xk. */

}

}

}

}

}

return TRUE;

}

This callback evaluates the Jacobian of the constraints for the global search. In
this case, the Jacobian is always full. Again, there is obviously nothing to do when
ignore_constraints is set.

static Bool eval_h_1(Index n, Number *x, Bool new_x, Number obj_factor,

Index m, Number *lambda, Bool new_lambda,

Index nele_hess, Index *iRow, Index *jCol,

Number *values, UserDataPtr user_data)

{

#ifdef USE_BFGS

return FALSE;

#else

if (!values) { /* sparsity structure */

/* full Hessian */

Index k=0,i,j;

for (i=0; i<DIMX; i++) {

for (j=0; j<=i; j++) {

iRow[k]=i; jCol[k++]=j;

}

}

} else { /* values */

Index i,k,l;

100 CHAPTER 4. IMPLEMENTATION

/* Hessian of the objective function */

gmm_hess(x,values);

for (i=0; i<FULL_SYMM_MAT(DIMX); i++) {

values[i]*=obj_factor;

}

if (!ignore_constraints) {

for (i=0; i<(Index)num_estimate_constraints; i++) {

/* Hessian of the quadratic polynomial */

Number *p=estimate_constraint_coeffs[i]+(1+DIMX); /* skip constant and

linear terms */

Number *q=values;

for (k=0; k<DIMX; k++) { /* quadratic/bilinear terms (linear

derivatives) */

for (l=0; l<=k; l++) {

(q++)+=lambda[i]((k==l)?2.:1.)*(*(p++));

}

}

}

}

}

return TRUE;

#endif

}

This callback evaluates the Hessian of the Lagrangian for the global search. Again,
we cannot make use of the sparsity, our Hessian is always full.

int solve_nlp(void)

{

Number x[DIMX+DIMZ+DIMY];

IpoptProblem problem=NULL;

Index i,j,k,l;

switch (optimization_problem) {

case 0:

{

/* lower and upper bounds */

Number x_L[DIMX+DIMZ+DIMY];

Number x_U[DIMX+DIMZ+DIMY];

Number g_L[1+DIMZ];

Number g_U[1+DIMZ];

/* x */

for (i=0; i<DIMX; i++) {

x_L[i]=xlow[i];

x_U[i]=xup[i];

}

/* z */

for (j=0; j<DIMX; j++) {

for (k=0; k<=j; k++) {

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 101

/* interval multiplication [xlow[j],xup[j]]*[xlow[k],xup[k]] */

Number

bounds[4]={xlow[j]*xlow[k],xlow[j]*xup[k],xup[j]*xlow[k],

xup[j]*xup[k]};

Number zlow=*bounds, zup=*bounds;

for (l=1; l<4; l++) {

if (bounds[l]<zlow) zlow=bounds[l];

if (bounds[l]>zup) zup=bounds[l];

}

x_L[i]=zlow;

x_U[i++]=zup;

}

}

/* y */

for (; i<DIMX+DIMZ+DIMY; i++) {

x_L[i]=Flow[i-(DIMX+DIMZ)];

x_U[i]=Fup[i-(DIMX+DIMZ)];

}

/* covariance model interval constraint */

*g_L=klow;

*g_U=kup;

/* equality constraints */

for (i=1; i<=DIMZ; i++) {

g_L[i]=0.;

g_U[i]=0.;

}

/* nele_jac: first row full: DIMX+DIMZ+DIMY

+ rows for quadratic terms in z: 2 nonzero entries * DIMX

+ rows for bilinear terms in z: 3 nonzero entries *

(DIMZ-DIMX)

= DIMX+DIMZ+DIMY + 2*DIMX + 3*(DIMZ-DIMX)

= DIMX+DIMZ+DIMY + 2*DIMX + 3*DIMZ - 3*DIMX

= DIMY + 4*DIMZ */

problem=CreateIpoptProblem(/*n=*/ DIMX+DIMZ+DIMY,x_L,x_U,

/*m=*/ 1+DIMZ,g_L,g_U,

/*nele_jac=*/ DIMY+(DIMZ<<2),

/*nele_hess=*/ FULL_SYMM_MAT(DIMX+DIMZ+DIMY)

/*full Hessian*/ ,

/*index_style=*/ 0,

eval_f_0,eval_g_0,eval_grad_f_0,eval_jac_g_0,

eval_h_0);

/* starting value: best point */

for (i=0; i<DIMX; i++) {

x[i]=best_point[i];

}

for (j=0; j<DIMX; j++) {

for (k=0; k<=j; k++) {

x[i++] = x[j]*x[k];

}

102 CHAPTER 4. IMPLEMENTATION

}

for (; i<DIMX+DIMZ+DIMY; i++) {

x[i]=best_point[i-DIMZ];

}

}

break;

case 1:

{

Index

num_constraints=ignore_constraints?0:(Index)num_estimate_constraints;

/* estimate constraints */

Number g_L[num_constraints];

Number g_U[num_constraints];

for (j=0; j<(Index)num_constraints; j++) {

g_L[j]=-ESTIMATE_CONSTRAINT_TOL;

g_U[j]=INF;

}

problem=CreateIpoptProblem(/*n=*/ DIMX,/*x_L=*/ xlow,/*x_U=*/ xup,

/*m=*/ num_constraints,g_L,g_U,

/*nele_jac=*/ DIMX*num_constraints /* full

Jacobian */ ,

/*nele_hess=*/ FULL_SYMM_MAT(DIMX) /* full

Hessian */ ,

/*index_style=*/ 0,

eval_f_1,eval_g_1,eval_grad_f_1,eval_jac_g_1,

eval_h_1);

if (ignore_constraints) {

/* starting value: center of box */

for (i=0; i<DIMX; i++) {

x[i]=(xlow[i]+xup[i])*.5;

}

} else {

/* starting value: unconstrained minimum */

for (i=0; i<DIMX; i++) {

x[i]=optimum_x[i];

}

}

}

break;

}

if (!problem) {

fprintf(stderr, "CreateIpoptProblem failed\n");

exit(1);

}

/* Scale objective for better performance */

if (optimization_problem) {

if (!AddIpoptNumOption(problem,(char *)"obj_scaling_factor",16384.)) {

fprintf(stderr, "AddIpoptNumOption failed\n");

4.4. INTERFACE TO THIRD-PARTY NLP LIBRARIES 103

exit(1);

}

}

#ifdef USE_BFGS

/* These are of course const char * (the underlying C++ functions take const

std::string &), but the prototype is wrong, so silence -Wwrite-strings

warnings. */

if (!AddIpoptStrOption(problem,(char *)"hessian_approximation",(char

*)"limited-memory")) {

fprintf(stderr, "AddIpoptStrOption failed\n");

exit(1);

}

#endif

if (!AddIpoptIntOption(problem,(char *)"print_level",2 /*J_WARNING*/)) {

fprintf(stderr, "AddIpoptIntOption failed\n");

exit(1);

}

int ret=IpoptSolve(problem,x,NULL,NULL,NULL,NULL,NULL,NULL);

FreeIpoptProblem(problem);

/* remember optimum x */

for (i=0; i<DIMX; i++) optimum_x[i]=x[i];

return ret;

}

This function implements the main optimizer abstraction for Ipopt: We cre-
ate temporary arrays for the bounds, then allocate the problem structure with
CreateIpoptProblem (which copies the bounds internally, so the arrays going out
of scope is not a problem), set the starting point and some options and run the
actual optimization function (IpoptSolve). Finally, we free the problem structure
with FreeIpoptProblem and save the result, which is contained in the local vari-
able x, into the global variable optimum_x. The obj_scaling_factor is required
for the global search because our objective function for that problem has a rather
small scale and Ipopt is very sensitive to scaling. The value of 16384 is the result of
some experiments, other nearby powers of two also work. (We use a power of two
so scaling does not introduce rounding errors.) The print_level option reduces
the amount of debugging output to an acceptable level for the many invocations
of Ipopt (warnings and errors only).

104 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

In this chapter, we give some metrics about the performance of the algorithm,
both in terms of speed and quality. The �rst section describes the approach used
to obtain the results, in order to allow them to be reproduced. The second section
presents the results themselves.

5.1 Testing Methods

We tested our implementation on a few test cases from the libraries 1 and 2 of the
COCONUT Benchmark [47, 48]. These libraries contain common test problems
converted to COCONUT's internal DAG representation, which can be converted to
C code using APIs from the COCONUT Environment [49, 3]. Library 1 contains
problems taken from GLOBALLib [46] and the Handbook of Test Problems in
Local and Global Optimization [50]. Library 2 corresponds to Vanderbei's CUTE
Test Collection [51].

It is important to note that these test cases involve cheap, analytical functions,
not expensive black box functions as in the real-world problems our algorithm is
targeted at. This implies that all time measurements essentially only measure the
time spent within the algorithm. Therefore, the number of function evaluations is
an important metric which must be taken into account when estimating the time
spent on real-world problems.

We found that the DAG to C converter included in COCONUT, while close to
what was needed, was not entirely suitable for our needs. Therefore, we rewrote the
main C writer function c_write::c_print in c_write.cc to output the problems
in the format we required. We were able to reuse the existing APIs within the
function, so only c_write::c_print had to be modi�ed. The modi�ed �le is
reproduced below. It is licensed under the GNU Library or Lesser General Public
License, version 2 [52] or later.

105

106 CHAPTER 5. RESULTS

// C writer implementation -*- C++ -*-

// $Id: c_write.cc 2 2006-04-14 11:01:54Z herman $

// Copyright (C) 2001-2003 Hermann Schichl

// Copyright (C) 2007 Kevin Kofler

//

// This file is part of the COCONUT API. This library

// is free software; you can redistribute it and/or modify it under the

// terms of the Library GNU General Public License as published by the

// Free Software Foundation; either version 2, or (at your option)

// any later version.

// This library is distributed in the hope that it will be useful,

// but WITHOUT ANY WARRANTY; without even the implied warranty of

// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

// Library GNU General Public License for more details.

// As a special exception, you may use this file as part of a free software

// library without restriction. Specifically, if other files instantiate

// templates or use macros or inline functions from this file, or you compile

// this file and link it with other files to produce an executable, this

// file does not by itself cause the resulting executable to be covered by

// the Library GNU General Public License. This exception does not however

// invalidate any other reasons why the executable file might be covered by

// the Library GNU General Public License.

/** @file c_write.cc */

#include <c_write.h>

namespace coco_rm {

using namespace coco;

static const char *HL_names[] = {

"G",

"C",

"V",

"+",

"+",

"*",

"max",

"min",

"monome",

"scprod",

"norm",

"/",

"pow",

5.1. TESTING METHODS 107

"sqrt",

"fabs",

"pow",

"exp",

"log",

"sin",

"cos",

"exp(pow",

"poly",

"pow",

"/",

"atan2",

"LINALG_lin",

"LINALG_quad",

"COMPLEX_re",

"COMPLEX_im",

"COMPLEX_arg",

"COMPLEX_conj",

"TABLE_lookup",

"TABLE_pwlin",

"TABLE_spline",

"TABLE_pwcl",

"TABLE_pwcr",

"LOGIC_in",

"LOGIC_if",

"LOGIC_and",

"LOGIC_or",

"LOGIC_not",

"LOGIC_implies",

"CARD_count",

"CARD_alldiff",

"CARD_histogram",

"CARD_level",

"INT_neighbor",

"INT_nogood",

"STOCH_expectation",

"STOCH_integral",

"MATRIX_det",

"MATRIX_cond",

"MATRIX_psd",

108 CHAPTER 5. RESULTS

"MATRIX_multiply",

"MATRIX_fem",

"MATRIX_const_multiply",

"MATRIX_const_fem",

NULL

};

#define HL_CLASS_NAME c_write

#define _HL_WRITE_WITH_GHOST 1

#define HL_PRECEDENCE_FUNC 1

#define HL_PRECEDENCE_SUM 10

#define HL_PRECEDENCE_PROD 50

#define HL_PRECEDENCE_TERMINAL 1000

} // namespace coco_rm

#include <templates/hl_visitor.h>

// This constant is used instead of infinity to ensure finite bounds.

// (Kevin Kofler)

#define INF_BOUND 1000.

namespace coco_rm {

void c_write::c_print(const model& DAG, std::ostream& o,

const control_data& __c) const

{

std::string headers;

std::string objective_preamble;

std::string objective_postamble;

std::string ofunction_end;

std::string constraints_preamble;

std::string constraints_postamble;

std::string x_v, y_v, k_v;

std::string switch_preamble;

std::string switch_postamble;

std::string cfunction_end;

std::string footers;

std::string vtype;

std::string ktype;

bool print_y, with_comment;

__c.assign("header", headers, _headers);

__c.assign("objective preamble", objective_preamble, _objective_preamble);

__c.assign("objective postamble", objective_postamble, _objective_postamble);

__c.assign("objective function end", ofunction_end, _ofunction_end);

5.1. TESTING METHODS 109

__c.assign("constraints preamble", constraints_preamble,

_constraints_preamble);

__c.assign("constraints postamble", constraints_postamble,

_constraints_postamble);

__c.assign("x", x_v, _x_v);

__c.assign("y", y_v, _y_v);

__c.assign("kappa", k_v, _k_v);

__c.assign("switch preamble", switch_preamble, _switch_preamble);

__c.assign("switch postamble", switch_postamble, _switch_postamble);

__c.assign("constraint functions end", cfunction_end, _cfunction_end);

__c.assign("footer", footers, _footers);

__c.assign("type", vtype, _vtype);

__c.assign("kappa type", ktype, _ktype);

__c.assign("print multipliers", print_y, true);

__c.assign("with comments", with_comment, true);

hlwrite_visitor p(o, x_v, y_v, k_v, print_y, with_comment);

int i;

unsigned int n;

char *name(NULL);

double d;

int precsave = o.precision(22);

// Mihaly, 12.12.2003

// set the filib interval precision as well

int intprecsave = interval::precision(22);

// This section rewritten by Kevin Kofler to output the problem.c file in the

// format needed by bbowda.

// Dimension of the x vector (number of independent variables)

int dimx = DAG.number_of_variables();

// Number of implicit inequality resp. equality constraints

// (All constraints are assumed implicit. As always in our formulation, implicit

// inequality constraints are represented as explicit equality constraints with

// bounds for the variable on the left hand side.)

int dimconstr = 0, dimeqconstr = 0;

// 1 if the objective function is nonlinear, which means it has to be

// reformulated as an explicit equality constraint. Currently, we cannot detect

// linear objective functions, so we always do this substitution unless the

// objective function is constant zero (constraint satisfaction problem). This

// probably makes the results more realistic anyway as we do not have the

// coefficients (or possibly do not even know if the objective function is

// linear) in a real black box problem.

int nonlin_obj = 0;

// Output the header common to all problems

o << "#include \"problem.h\"\n#include <math.h>\n\n/* USER INPUT: */\n/* min "

"cT (x, F(x)) */\nDOUBLE c[DIMX+DIMY]={";

110 CHAPTER 5. RESULTS

// Count equality and inequality constraints

for(std::vector<expression_walker>::const_iterator b =

DAG.constraints.begin();

b != DAG.constraints.end(); ++b)

{

if((*b)->is(ex_linear) || (*b)->is(ex_nonlin)) {

if ((*b)->f_bounds.isPoint())

dimeqconstr++;

else

dimconstr++;

}

}

// Detect if we need to do the variable substitution for the objective function,

// then output the coefficients c

expression_walker obj=DAG.objective;

if (!DAG.ocoeff) {

for (int i=0; i<dimx+dimconstr; i++) o << "0.,";

// linear objective not implemented

// } else if (!obj->is(ex_nonlin)) {

// for (int i=0; i<dimx; i++) o << ???;

// for (int i=0; i<dimconstr; i++) o << "0.,";

} else {

nonlin_obj = 1;

for (int i=0; i<dimx; i++) o << "0.,";

o << DAG.obj_mult() * DAG.ocoeff << ",";

for (int i=0; i<dimconstr; i++) o << "0.,";

}

o << "};\n";

// We ignore (comment out) DAG.obj_adj() as it does not change the solution, and

// bbowda cannot handle it.

if ((d = DAG.obj_adj() * DAG.ocoeff)) {

o << "/* ";

if(d > 0)

o << "+ " << d;

else if(d < 0)

o << "- " << fabs(d);

o << " */\n";

}

// Collect the bounds for the variables and constraints, except for the implicit

// equality constraints for which we handle them later. For variables, we do not

// know if we have bounds, so we initialize them to infinite bounds (actually

// the finite replacement), constraints always have a bound interval, which may

// of course be infinite in one direction (or even both, though that makes the

// constraint redundant). The objective function also always carries a bound,

// though it is usually just [-inf,inf].

double lbounds[dimx];

5.1. TESTING METHODS 111

double ubounds[dimx];

for (int i=0; i<dimx; i++) {

lbounds[i] = -INF_BOUND;

ubounds[i] = INF_BOUND;

}

double clbounds[dimconstr];

double cubounds[dimconstr];

double *pclbounds = clbounds, *pcubounds = cubounds;

for(std::vector<expression_walker>::const_iterator b =

DAG.constraints.begin();

b != DAG.constraints.end(); ++b)

{

interval bounds = (*b)->f_bounds;

bool iscon = ((*b)->is(ex_linear) || (*b)->is(ex_nonlin));

if (iscon && bounds.isPoint()) continue;

double *plbound = iscon ? (pclbounds++) : lbounds + (*b)->params.nn();

double *pubound = iscon ? (pcubounds++) : ubounds + (*b)->params.nn();

double lbound = bounds.inf();

*plbound = isinf(lbound) ? -INF_BOUND : lbound;

double ubound = bounds.sup();

*pubound = isinf(ubound) ? INF_BOUND : ubound;

}

// Now output the bounds we collected

o << "/* s.t. Flow <= F(x) <= Fup */\nDOUBLE Flow[DIMY]={";

if (nonlin_obj) {

double objlbound = DAG.objective->f_bounds.inf();

o << (isinf(objlbound) ? -INF_BOUND : objlbound) << ",";

}

for (int i=0; i<dimconstr; i++) o << clbounds[i] << ",";

o << "};\nDOUBLE Fup[DIMY]={";

if (nonlin_obj) {

double objubound = DAG.objective->f_bounds.sup();

o << (isinf(objubound) ? INF_BOUND : objubound) << ",";

}

for (int i=0; i<dimconstr; i++) o << cubounds[i] << ",";

o << "};\n/* xlow <= x <= xup */\nDOUBLE xlow[DIMX]={";

for (int i=0; i<dimx; i++) o << lbounds[i] << ",";

o << "};\nDOUBLE xup[DIMX]={";

for (int i=0; i<dimx; i++) o << ubounds[i] << ",";

// Generate the function evaluation function

o << "};\n\n/* starting points */\nDOUBLE initpts[NUMINITPTS][DIMX]={};\n\n/*"

" evaluate F(x) */\nvoid evaluate_F(const DOUBLE *x, DOUBLE *F)\n{\n";

// If we had to make the variable substitution, the first component is the

// objective function.

if (nonlin_obj) {

o << " *(F++) = ";

112 CHAPTER 5. RESULTS

recursive_walk(DAG.objective, p);

o << ";\n";

}

// The next components are the inequality constraints.

for(std::vector<expression_walker>::const_iterator b =

DAG.constraints.begin();

b != DAG.constraints.end(); ++b)

{

if(((*b)->is(ex_linear) || (*b)->is(ex_nonlin)) &&

!(*b)->f_bounds.isPoint()) {

o << " *(F++) = ";

recursive_walk(*b, p);

o << ";\n";

}

}

// The last components are the equality constraints.

// We require them in the F2(x)=0 form, so the point interval for the bounds

// (i.e. the right hand side) is subtracted.

for(std::vector<expression_walker>::const_iterator b =

DAG.constraints.begin();

b != DAG.constraints.end(); ++b)

{

if(((*b)->is(ex_linear) || (*b)->is(ex_nonlin)) && (*b)->f_bounds.isPoint())

{

o << " *(F++) = ";

recursive_walk(*b, p);

d = -(*b)->f_bounds.inf();

if(d > 0)

o << " + " << d;

else if(d < 0)

o << " - " << fabs(d);

o << ";\n";

}

}

o << "}\n";

// Finally, output the probldim.h file (i.e. the problem dimensions) to stderr

// so both problem.c and probldim.h can be generated in one go and separately

// redirected.

std::cerr << "#pragma once\n\n/* USER INPUT: Problem dimensions */\n#define "

"DIMX "

<< dimx << "\n#define DIMY " << (dimconstr + nonlin_obj) <<

"\n#define DIMY_EQ "

<< dimeqconstr << "\n\n/* USER INPUT: Number of starting points "

"*/\n#define NUMINITPTS 0\n\n"

"/* USER INPUT: Maximum points to evaluate */\n#define MAXPTS "

"100\n\n"

"/* USER INPUT: Tolerance for optimum feasibility */\n#define "

"OPTIMUM_TOL .001\n\n"

5.1. TESTING METHODS 113

"/* USER INPUT: If defined, ignore equality constraints for global "

"search */\n"

"#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS\n\n"

"/* USER INPUT: Tolerance for the constraints estimating the "

"equality constraints\n"

" during global search */\n#define "

"ESTIMATE_CONSTRAINT_TOL .01\n";

// End of the section rewritten by Kevin Kofler

// Mihaly, 12.12.2003

// restore default interval output precision

interval::precision(intprecsave);

}

} // namespace coco_rm

One problem we encountered is that many variables in the test problems lack
one or both bounds. (In some cases, the variables are truly unbounded, in others,
bounds easily follow from the constraints.) Our algorithm, however, can only work
with �nite bounds. Moreover, it is important for the bounds for the x variables
to be as close together as possible, as our algorithm performs better when more of
the x within the bounds are also within the bounds for y = F1(x). This is mainly
due to the fact that by design, our global search only handles implicit equality
constraints specially, not inequality constraints (i.e. the bounds on the variables
given by explicit equality constraints). The reasons for this tradeo� are explained
in sections 3.2.1 and 3.2.5. Therefore, arti�cially large bounds like [−1000, 1000]
are not usable for most problems, at least for x. (The bounds for y are less sensitive
because they are only used in the local surrogate models where locality is ensured
by the covariance ellipsoid, so those bounds being larger than necessary is not a
big deal.) Thus, we set reasonable bounds for the variables by hand where they
are missing. Any added bounds will be presented together with the results below.
The number of function values needed for convergence was determined by trial and
error, future work can be put into termination criteria (see section 6.2).

In addition, we ran some simple scalability tests. In the �rst one, we used a
trivial quadratic objective and used the usual variable substitution to turn it into
the explicit equality constraint y = F1(x) =

∑
i

(
xi −

(√
2− 1

))2
and the linear

objective function y. We chose the bound constraints [−1, 1] on xi and [−d, 2d],
where d is the dimension of the vector x, on y. (The bounds on y are not a true
constraint because xi ∈ [−1, 1] implies y ∈ [0, 2d]). We also tried the bounds
[−d, d] for y. We used the following probldim.h:

/* USER INPUT: Problem dimensions */

#define DIMX 1 /* scale this to scale the problem */

#define DIMY 1

114 CHAPTER 5. RESULTS

#define DIMY_EQ 0

/* USER INPUT: Number of starting points */

#define NUMINITPTS 0

/* USER INPUT: Maximum points to evaluate */

#define MAXPTS 50

/* USER INPUT: Tolerance for optimum feasibility */

#define OPTIMUM_TOL .001

/* USER INPUT: If defined, ignore equality constraints for global search */

#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

/* USER INPUT: Tolerance for the constraints estimating the equality constraints

during global search */

#define ESTIMATE_CONSTRAINT_TOL .01

and the following problem.c:

/* USER INPUT: */

/* min cT (x, F(x)) */

DOUBLE c[DIMX+DIMY]={[0 ... DIMX-1]=0., [DIMX]=1.};

/* s.t. Flow <= F(x) <= Fup */

DOUBLE Flow[DIMY]={-(DOUBLE)DIMX};

DOUBLE Fup[DIMY]={(DOUBLE)(2*DIMX)};

/* xlow <= x <= xup */

DOUBLE xlow[DIMX]={[0 ... DIMX-1]=-1.};

DOUBLE xup[DIMX]={[0 ... DIMX-1]=1.};

/* starting points */

DOUBLE initpts[NUMINITPTS][DIMX]={};

/* evaluate F(x) */

void evaluate_F(const DOUBLE *x, DOUBLE *F)

{

size_t i;

*F = 0.;

for (i=0; i<DIMX; i++)

*F += (x[i] - .4142135623731) * (x[i] - .4142135623731);

}

and DIMX was varied to scale the problem, MAXPTS was increased in increments of
50 until convergence was obtained. We measured the impact on the run time of
the algorithm. In a second test, we represented the objective as an implicit rather
than an explicit equality constraint:

d−1∑
i=1

(
xi −

(√
2− 1

))2

− xd = 0.

5.1. TESTING METHODS 115

We used the following probldim.h:

#pragma once

/* USER INPUT: Problem dimensions */

#define DIMX 2 /* scale this to scale the problem */

#define DIMY 0

#define DIMY_EQ 1

/* USER INPUT: Number of starting points */

#define NUMINITPTS 0

/* USER INPUT: Maximum points to evaluate */

#define MAXPTS 200

/* USER INPUT: Tolerance for optimum feasibility */

#define OPTIMUM_TOL .001

/* USER INPUT: If defined, ignore equality constraints for global search */

#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

/* USER INPUT: Tolerance for the constraints estimating the equality constraints

during global search */

#define ESTIMATE_CONSTRAINT_TOL .01

and the following problem.c:

/* USER INPUT: */

/* min cT (x, F(x)) */

DOUBLE c[DIMX+DIMY]={[0 ... DIMX-2]=0., [DIMX-1]=1.};

/* s.t. Flow <= F(x) <= Fup */

DOUBLE Flow[DIMY]={};

DOUBLE Fup[DIMY]={};

/* xlow <= x <= xup */

DOUBLE xlow[DIMX]={[0 ... DIMX-2]=-1., [DIMX-1]=-(DOUBLE)(DIMX-1)};

DOUBLE xup[DIMX]={[0 ... DIMX-2]=1., [DIMX-1]=(DOUBLE)(DIMX-1)*2.};

/* starting points */

DOUBLE initpts[NUMINITPTS][DIMX]={};

/* evaluate F(x) */

void evaluate_F(const DOUBLE *x, DOUBLE *F)

{

size_t i;

*F = 0.;

for (i=0; i<DIMX-1; i++)

*F += (x[i] - .4142135623731) * (x[i] - .4142135623731);

*F -= x[DIMX-1];

}

116 CHAPTER 5. RESULTS

As a third test, we used the multidimensional Rosenbrock function

y =
d−1∑
i=1

(
(1− xi)

2 + 100
(
xi+1 − x2

i

)2
)

with the bound constraints [−1, 2] on xi and [−1000, 2700] on y. We used the
following probldim.h:

/* USER INPUT: Problem dimensions */

#define DIMX 2 /* scale this to scale the problem */

#define DIMY 1

#define DIMY_EQ 0

/* USER INPUT: Number of starting points */

#define NUMINITPTS 0

/* USER INPUT: Maximum points to evaluate */

#define MAXPTS 200

/* USER INPUT: Tolerance for optimum feasibility */

#define OPTIMUM_TOL .001

/* USER INPUT: If defined, ignore equality constraints for global search */

#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

/* USER INPUT: Tolerance for the constraints estimating the equality constraints

during global search */

#define ESTIMATE_CONSTRAINT_TOL .01

and the following problem.c:

/* USER INPUT: */

/* min cT (x, F(x)) */

DOUBLE c[DIMX+DIMY]={[0 ... DIMX-1]=0., [DIMX]=1.};

/* s.t. Flow <= F(x) <= Fup */

DOUBLE Flow[DIMY]={-1000.};

DOUBLE Fup[DIMY]={2700.};

/* xlow <= x <= xup */

DOUBLE xlow[DIMX]={[0 ... DIMX-1]=-1.};

DOUBLE xup[DIMX]={[0 ... DIMX-1]=2.};

/* starting points */

DOUBLE initpts[NUMINITPTS][DIMX]={};

/* evaluate F(x) */

void evaluate_F(const DOUBLE *x, DOUBLE *F)

{

size_t i;

5.1. TESTING METHODS 117

*F = 0.;

for (i=0; i<DIMX - 1; i++)

*F += (1. - x[i]) * (1. - x[i]) + 100. * (x[i+1] - x[i]*x[i]) * (x[i+1] -

x[i]*x[i]);

}

The last, and hardest, scalability test, was the multidimensional Rosenbrock func-
tion written as an implicit equality constraint

d−2∑
i=1

(
(1− xi)

2 + 100
(
xi+1 − x2

i

)2
)
− xd = 0

with the bound constraints [−1, 2] on x1, . . . , xd−1 and [−1, 1] on xd. We used the
following probldim.h:

/* USER INPUT: Problem dimensions */

#define DIMX 3 /* scale this to scale the problem */

#define DIMY 0

#define DIMY_EQ 1

/* USER INPUT: Number of starting points */

#define NUMINITPTS 0

/* USER INPUT: Maximum points to evaluate */

#define MAXPTS 300

/* USER INPUT: Tolerance for optimum feasibility */

#define OPTIMUM_TOL .001

/* USER INPUT: If defined, ignore equality constraints for global search */

#undef GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS

/* USER INPUT: Tolerance for the constraints estimating the equality constraints

during global search */

#define ESTIMATE_CONSTRAINT_TOL .01

and the following problem.c:

/* USER INPUT: */

/* min cT (x, F(x)) */

DOUBLE c[DIMX+DIMY]={[0 ... DIMX-2]=0., [DIMX-1]=1.};

/* s.t. Flow <= F(x) <= Fup */

DOUBLE Flow[DIMY]={};

DOUBLE Fup[DIMY]={};

/* xlow <= x <= xup */

DOUBLE xlow[DIMX]={[0 ... DIMX-2]=-1., [DIMX-1]=-1.};

DOUBLE xup[DIMX]={[0 ... DIMX-2]=2., [DIMX-1]=1.};

118 CHAPTER 5. RESULTS

/* starting points */

DOUBLE initpts[NUMINITPTS][DIMX]={};

/* evaluate F(x) */

void evaluate_F(const DOUBLE *x, DOUBLE *F)

{

size_t i;

*F = 0.;

for (i=0; i<DIMX-2; i++)

*F += (1. - x[i]) * (1. - x[i]) + 100. * (x[i+1] - x[i]*x[i]) * (x[i+1] -

x[i]*x[i]);

*F -= x[DIMX-1];

}

In this example, our primary measurement target was not so much speed, but
whether convergence can be obtained at all.

We report results obtained both with DONLP2 and with Ipopt (using MUMPS
as the linear solver) so the results with the di�erent NLP optimizers can be com-
pared, and also to reduce the in�uence of the performance of the third-party op-
timizers on our overall results.

The following versions of the third-party libraries were used to obtain the results
below:

• lp_solve 5.5.0.10

• donlp2_intv_dyn dated 2006-12-12

• Ipopt 3.3.2

• MUMPS 4.7.3

• ATLAS 3.6.0-11.fc6 as the BLAS and LAPACK implementation

The tests were run on a Pentium 4 Northwood 2.6 GHz running a fully-updated
Fedora 7. Except for ATLAS, for which we used the o�cial Fedora package, the
libraries were built from source.

We patched DONLP2 to use float.h instead of hardcoded values for
DBL_EPSILON and DBL_MIN which are only approximations because this improved
the performance a lot in practice. An older version of DONLP2 detected the values
at runtime, which came up with the exact values, but caused other issues, thus
the change to hardcoded values and the resulting regression. We discussed this
with Prof. Spellucci, the author of DONLP2, but we were unable to track down
why using these approximations instead of the exact values makes a di�erence at
all. Therefore, we switched to using float.h as a quick �x to get rid of the
regression, though this solution is not applicable upstream because it is not
portable.

5.1. TESTING METHODS 119

--- o8para.h.orig 2005-06-16 12:35:49.000000000 +0200

+++ o8para.h 2006-12-12 21:24:00.000000000 +0100

@@ -15,8 +15,12 @@

/* should be in float.h */

+#if 1

+#include <float.h>

+#else

#define DBL_EPSILON 2.2e-16

#define DBL_MIN 1.0e-308

+#endif

/* Types */

We also patched the lp_solve compilation script ccc to enable debugging in-
formation (by changing opts='-O3' to opts='-O3 -g') and the Ipopt con�gury
and make�le to �x compilation issues (ipopt.so failing to link because it was not
linked against libc_nonshared.a, which we �xed by just linking it against all the
libraries it uses, which is how shared libraries are intended to be linked on Fedora:

--- Ipopt/src/Interfaces/Makefile.am.orig 2006-07-07 05:07:08.000000000 +0200

+++ Ipopt/src/Interfaces/Makefile.am 2006-11-18 23:39:30.000000000 +0100

@@ -37,7 +37,7 @@

IpTNLP.hpp \

IpTNLPAdapter.cpp IpTNLPAdapter.hpp

-libipopt_la_LIBADD = $(IPALLLIBS)

+libipopt_la_LIBADD = $(IPALLLIBS) @ADDLIBS@

libipopt_la_DEPENDENCIES = $(IPALLLIBS)

--- Ipopt/src/Interfaces/Makefile.in.orig 2006-07-10 20:48:06.000000000 +0200

+++ Ipopt/src/Interfaces/Makefile.in 2006-11-18 23:39:34.000000000 +0100

@@ -306,7 +306,7 @@

IpTNLP.hpp \

IpTNLPAdapter.cpp IpTNLPAdapter.hpp

-libipopt_la_LIBADD = $(IPALLLIBS)

+libipopt_la_LIBADD = $(IPALLLIBS) @ADDLIBS@

libipopt_la_DEPENDENCIES = $(IPALLLIBS)

libipopt_la_LDFLAGS = $(LT_LDFLAGS)

ADDLIBS_FILES = \

and �with-mumps-dir not working due to bad paths:

--- Ipopt/configure.orig 2007-06-21 17:54:36.000000000 +0200

+++ Ipopt/configure 2007-06-28 03:37:52.000000000 +0200

@@ -29314,7 +29314,11 @@

and we need the Fortran runtime libraries if we want to link with C/C++

coin_need_flibs=yes

120 CHAPTER 5. RESULTS

+if test "$use_mumps" = BUILD; then

MUMPS_INCFLAGS="-I\`\$(CYGPATH_W) $coin_mumpssrcdir/MUMPS/libseq\` -I\`\$(CYGPATH_W) ...

+else

+ MUMPS_INCFLAGS="-I\`\$(CYGPATH_W) $mumps_dir/libseq\` -I\`\$(CYGPATH_W) $mumps_dir/include\`"

+fi

fi

We used the following Makefile.inc for MUMPS:

This file is part of MUMPS VERSION 4.6.3

This Version was built on Thu Jun 22 13:22:44 2006

#

#

#Begin orderings

NOTE that PORD is distributed within MUMPS by default. If you would like to

use other orderings, you need to obtain the corresponding package and modify

the variables below accordingly.

For example, to have Metis available within MUMPS:

1/ download Metis and compile it

2/ uncomment (suppress # in first column) lines

starting with LMETISDIR, LMETIS

3/ add -Dmetis in line ORDERINGSF

ORDERINGSF = -Dpord -Dmetis

4/ Compile and install MUMPS

make clean; make (to clean up previous installation)

#

Metis is now available as an internal ordering for MUMPS.

#

#LSCOTCHDIR = $(HOME)/JY/emilio/bin/generic

#LSCOTCH = -L$(LSCOTCHDIR) -lesmumps -lfax -lorder -lscotch -lsymbol -ldof -lgraph -lcommon -lm

LPORDDIR = ../PORD/lib/

IPORD = -I../PORD/include/

LPORD = -L$(LPORDDIR) -lpord

#LMETISDIR = /local/metis/

#IMETIS = # Metis doesn't need include files (Fortran interface avail.)

#LMETIS = -L$(LMETISDIR) -lmetis

The following variables will be used in the compilation process.

#ORDERINGSF = -Dscotch -Dmetis -Dpord

ORDERINGSF = -Dpord

ORDERINGSC = $(ORDERINGSF)

LORDERINGS = $(LMETIS) $(LPORD) $(LSCOTCH)

IORDERINGS = $(IMETIS) $(IPORD) $(ISCOTCH)

#End orderings

##

##

RM = /bin/rm -f

CC = gcc

FC = gfortran

FL = gfortran

AR = ar vr

RANLIB = ranlib

5.2. RESULTS 121

INCSEQ = -I../libseq

LIBSEQ = -L../libseq -lmpiseq

LIBBLAS = -lblas

LIBOTHERS = -lpthread

#Preprocessor defs for calling Fortran from C (-DAdd_ or -DAdd__ or -DUPPER)

CDEFS = -DAdd_

#Begin Optimization options

OPTF = -O3 -g -fPIC -DPIC

OPTL = -O3 -g -fPIC -DPIC

OPTC = -O3 -g -fPIC -DPIC

#End Optimization options

INC = $(INCSEQ)

LIB = $(LIBSEQ)

LIBSEQNEEDED = libseqneeded

We also patched MUMPS to �x an uninitialized variable which caused segmenta-
tion faults on simple test cases:

--- MUMPS_4.7.3/src/dmumps_part9.F.orig 2007-05-04 15:57:44.000000000 +0200

+++ MUMPS_4.7.3/src/dmumps_part9.F 2007-10-01 01:29:25.000000000 +0200

@@ -790,6 +790,7 @@

RINF3 = U(2)

LORD = (JPERM(1).EQ.6)

NUM = 0

+ I0 = 0

DO 10 K = 1,N

JPERM(K) = 0

PR(K) = IP(K)

The applied patches can also be found next to the full source code of the imple-
mentation at http://www.tigen.org/kevin.kofler/bbowda/.

5.2 Results

In this section, we present the results obtained from the tests described above. In
all our tests, we did not provide starting values by hand, relying instead on our
automated starting point generation algorithm described in section 3.2.2.

In some cases, objective function values below the true minimum are returned.
This can be explained by the fact that our algorithm can return points which
are only feasible up to a given tolerance. It would be unrealistic to expect com-
plete feasibility out of a black box algorithm, especially in the presence of implicit
equality constraints.

122 CHAPTER 5. RESULTS

5.2.1 COCONUT Benchmark Library 1

We ran our optimizer on two examples from library 1 of the COCONUT Bench-
mark: circle and dispatch.

circle

The best known result for the circle (Circle Enclosing Points) problem, found
by MINOS, is:
4.5742477881 at [5.3880763381, 6.3990975587, 4.5742477881]

As there were no usable bounds for the three x variables, we provided the
bounds [0, 10] for all three. With DONLP2 as the local optimizer, our algorithm
found the solution:
4.626279 at x=[5.069064,6.109449,4.626279]

after 150 function evaluations and 17.430 seconds. (Increasing the number of
allowed function evaluations did not lead to a better solution.) With Ipopt as the
local optimizer, our algorithm found the solution:
4.574240 at x=[5.388075,6.399094,4.574240]

after 50 function evaluations and 52.046 seconds.

dispatch

The dispatch (Economic Load Dispatch Including Transmission Losses) problem
originates from power generation. The best known solution, found by MINOS, is:
3155.2879268581 at [50.0000000000, 75.4858804799, 93.2622541695,

8.7481346494]

The model does not provide bounds for x4 and the objective function nor an up-
per bound for the inequality constraint. Therefore we computed the bounds from
those for the �rst three x variables and rounded to obtain the following bounds:
x4 ∈ [−200, 320], the objective y1 ∈ [−1000, 7000] and the inequality constraint
y2 ∈ [210, 730] (y2 ≥ 210 was the original inequality constraint). The objec-
tive function includes a constant term 653.1000000000000227374 which cannot be
represented by our implementation, this term has to be added to the optimum
function value provided by our optimizer. With DONLP2 as the local optimizer, our
algorithm found the solution:
2502.184619 at x=[50.000000,76.060592,92.712255,8.773665]

(i.e. an actual optimum of 3155.284619) after 250 function evaluations and 51.357
seconds. With Ipopt as the local optimizer, our algorithm found the solution:
2502.173543 at x=[50.000000,75.527606,93.221193,8.749709]

(i.e. an actual optimum of 3155.273543) after 251 function evaluations (250 plus
one extrapolated point) and 1 minute 10.768 seconds.

5.2. RESULTS 123

5.2.2 COCONUT Benchmark Library 2

We ran our optimizer on three examples from library 2 of the COCONUT Bench-
mark: aljazzaf, twobars and maratos.

aljazzaf

The best known solution for the Aljazzaf example problem, found by OQNLP, is:
75.0049000369 at [0.0000000000, 0.9999999940, 0.9999990004]

We used the bounds [−1, 1] for the x variables and [0, 500] for y. With
DONLP2 as the local optimizer, our algorithm found the solution:
74.962735 at x=[0.000209,0.999946,0.999368]

after 201 function evaluations (200 plus one extrapolated point) and 2 minutes
1.482 seconds. With Ipopt as the local optimizer, our algorithm failed to �nd a
point satisfying the feasibility tolerance. After 250 function evaluations
and 19 minutes 32.282 seconds, extrapolation produced the 251st point
[-0.000108,0.999998,1.000075] which still fails to satisfy the tolerance.

twobars

The twobars (Structural analysis of the simplest two bar scheme) problem origi-
nates from mechanics. The best known solution, found by DONLP2, is:
1.50865 at [1.41163, 0.377072]

This model already provides usable bounds for the x variables, for y we kept
the default [−1000, 1000] from our converter. With DONLP2 as the local optimizer,
our algorithm found the solution:
1.557142 at x=[1.497032,0.286213]

after 150 function evaluations and 8.603 seconds. (Increasing the number of allowed
function evaluations did not lead to a better solution.) With Ipopt as the local
optimizer, our algorithm found the solution:
1.508620 at x=[1.411632,0.377006]

after 100 function evaluations and 55.188 seconds.

maratos

The maratos problem is hard to solve correctly because the variables in the optimal
solution have very di�erent scales. The best known solution, found by DONLP2, is:
-0.999999 at [1, -1.72277e-06]

For this problem, we used the bounds [−2, 2] for all x and y variables. We also
decreased our tolerance OPTIMUM_TOL to 10−5. (We tried decreasing it further to
10−6, but our optimizer failed to �nd a feasible point with that low a tolerance.) In
addition, we modi�ed the �nal output in main.c to print the second x coordinate

124 CHAPTER 5. RESULTS

for the retained optimum in exponential (%lg) format. With DONLP2 as the local
optimizer, we obtained:
-1.000000 at x=[1.000001,-5.2591e-05]

after 100 function evaluations and 20.791 seconds. With Ipopt as the local opti-
mizer, we obtained:
-1.000000 at x=[1.000001,-8.36745e-05]

after 100 function evaluations and 2 minutes 13.876 seconds.

5.2.3 Scalability Tests

The results of the scalability tests will be presented in tabular form: d is the dimen-
sion DIMX, N is the number of function evaluations MAXPTS, which we increased
in steps of 50 until convergence was obtained. For every d, we present N , the
obtained result and the computation time.

Quadratic Objective as Explicit Equality Constraint

With the bounds [−d, 2d] and DONLP2, we obtained the following results:
d N result timing
1 50 0.000000 at x=[0.414214] 0m0.128s
2 50 0.000000 at x=[0.414213, 0.414213] 0m0.158s
3 50 0.000000 at x=[0.414212, 0.414213, 0.414214] 0m0.279s
4 50 0.000000 at x=[0.414206, 0.414213, 0.414211, 0.414213] 0m0.283s
5 100 0.000000 at x=[0.414174, 0.414214, 0.414213, 0.414191,

0.414285]
0m8.271s

6 100 0.000000 at x=[0.414233, 0.414241, 0.414197, 0.414209,
0.414223, 0.414203]

0m1.639s

7 150 0.000006 at x=[0.415589, 0.413880, 0.414325, 0.414730,
0.415262, 0.414554, 0.415660]

0m24.437s

8 150 0.000004 at x=[0.414313, 0.415250, 0.414286, 0.412777,
0.414215, 0.413806, 0.414707, 0.414004]

0m9.224s

9 150 0.000024 at x=[0.416683, 0.414457, 0.415900, 0.413471,
0.414682, 0.415776, 0.412320, 0.414312, 0.411350]

0m19.006s

10 150 0.002135 at x=[0.410454, 0.424900, 0.418432, 0.425663,
0.376545, 0.420193, 0.400081, 0.405694, 0.406608,
0.422729]

1m4.449s

11 150 0.005927 at x=[0.423523, 0.394638, 0.449685, 0.450797,
0.413286, 0.370070, 0.409869, 0.430780, 0.416167,
0.438829, 0.417056]

2m35.631s

5.2. RESULTS 125

12 250 0.005325 at x=[0.421083, 0.416517, 0.396125, 0.439030,
0.403158, 0.406701, 0.399735, 0.450793, 0.446549,
0.416258, 0.375864, 0.405128]

2m54.620s

15 250 0.010697 at x=[0.379226, 0.435817, 0.416116, 0.451497,
0.426227, 0.431306, 0.397100, 0.380168, 0.368259,
0.403399, 0.454033, 0.440594, 0.446904, 0.413738,
0.402165]

14m33.505s

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

dimension

function evaluations
seconds

With the bounds [−d, 2d] and Ipopt, we obtained the following results:
d N result timing
1 50 0.000000 at x=[0.414214] 1m21.161s
2 50 0.000000 at x=[0.414214, 0.414214] 1m48.575s
3 50 0.000000 at x=[0.414212, 0.414213, 0.414214] 1m49.518s
4 50 0.000000 at x=[0.414214, 0.414206, 0.414217, 0.414218] 2m6.401s
5 50 0.000000 at x=[0.414212, 0.414209, 0.414217, 0.414217,

0.414215]
1m22.742s

6 150 0.001864 at x=[0.424792, 0.395376, 0.405232, 0.446523,
0.405346, 0.400285]

7m26.544s

7 150 0.000082 at x=[0.415469, 0.413441, 0.412501, 0.421436,
0.409857, 0.411803, 0.414716]

10m41.075s

126 CHAPTER 5. RESULTS

8 150 0.090652 at x=[0.476044, 0.377929, 0.469670, 0.595526,
0.415317, 0.223353, 0.466328, 0.312146]

14m58.880s

9 150 0.005280 at x=[0.463490, 0.391940, 0.424878, 0.410557,
0.432676, 0.396016, 0.426962, 0.376995, 0.411197]

16m35.947s

10 200 0.008180 at x=[0.408675, 0.364499, 0.439656, 0.373635,
0.427705, 0.446480, 0.408794, 0.433978, 0.388117,
0.446762]

34m49.248s

11 200 0.027408 at x=[0.413696, 0.422270, 0.459571, 0.423165,
0.386822, 0.341910, 0.471872, 0.444237, 0.306103,
0.451472, 0.370334]

41m19.946s

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

dimension

function evaluations
seconds

With the bounds [−d, d] and DONLP2, we obtained the following results:
d N result timing
1 50 0.000000 at x=[0.414214] 0m0.179s
2 50 0.000000 at x=[0.414213, 0.414213] 0m0.150s
3 50 0.000000 at x=[0.414209, 0.414212, 0.414214] 0m0.213s
4 50 0.000000 at x=[0.414210, 0.414209, 0.414209, 0.414209] 0m0.296s
5 100 0.000000 at x=[0.414181, 0.414182, 0.414248, 0.414230,

0.414236]
0m4.580s

5.2. RESULTS 127

6 100 0.000000 at x=[0.414258, 0.414215, 0.414191, 0.414175,
0.414201, 0.414188]

0m1.873s

7 150 0.000003 at x=[0.414214, 0.414372, 0.413694, 0.414045,
0.415357, 0.413341, 0.414615]

0m25.771s

8 150 0.000005 at x=[0.413441, 0.414298, 0.414133, 0.413661,
0.415208, 0.412796, 0.413929, 0.415292]

0m5.986s

9 150 0.000033 at x=[0.416754, 0.413384, 0.416301, 0.411805,
0.416508, 0.412610, 0.415267, 0.412961, 0.416480]

0m11.858s

10 150 0.000014 at x=[0.415348, 0.414646, 0.412863, 0.414172,
0.414913, 0.414468, 0.411721, 0.413994, 0.416010,
0.414990]

0m55.638s

11 200 0.000120 at x=[0.416546, 0.412628, 0.412814, 0.416710,
0.415514, 0.413084, 0.409532, 0.422484, 0.417369,
0.414557, 0.414801]

4m57.741s

12 200 0.001256 at x=[0.416139, 0.416125, 0.422931, 0.405190,
0.418267, 0.431585, 0.431566, 0.400974, 0.405323,
0.407736, 0.424156, 0.405428]

3m49.261s

15 250 0.000030 at x=[0.412119, 0.416130, 0.415487, 0.415483,
0.412698, 0.415777, 0.410633, 0.414821, 0.413724,
0.414758, 0.414624, 0.413491]

3m22.779s

 0.1

 1

 10

 100

 1000

 0 2 4 6 8 10 12 14 16

dimension

function evaluations
seconds

128 CHAPTER 5. RESULTS

With the bounds [−d, d] and Ipopt, we obtained the following results:
d N result timing
1 50 0.000000 at x=[0.414214] 1m20.927s
2 50 0.000000 at x=[0.414214, 0.414214] 1m30.977s
3 50 0.000000 at x=[0.414209, 0.414212, 0.414214] 1m51.573s
4 50 0.000000 at x=[0.414209, 0.414172, 0.414223, 0.414242] 1m41.482s
5 100 0.000101 at x=[0.415401, 0.409436, 0.408749, 0.415721,

0.407515]
3m25.474s

6 100 0.039120 at x=[0.435564, 0.247794, 0.465127, 0.371406,
0.484499, 0.374159]

4m39.175s

7 150 0.008043 at x=[0.436211, 0.431775, 0.376922, 0.347588,
0.394180, 0.382644, 0.418994]

9m58.997s

8 150 0.002461 at x=[0.434466, 0.396184, 0.448527, 0.401424,
0.395998, 0.413056, 0.421308, 0.415187]

13m27.480s

9 150 0.000392 at x=[0.409553, 0.419314, 0.424432, 0.417257,
0.401716, 0.410869, 0.411915, 0.421718, 0.413079]

13m33.714s

10 150 0.004097 at x=[0.406398, 0.409782, 0.399265, 0.397437,
0.418756, 0.416686, 0.463113, 0.430380, 0.402358,
0.387912]

25m44.301s

11 150 0.034805 at x=[0.447537, 0.452834, 0.327736, 0.399374,
0.440426, 0.335542, 0.409214, 0.365755, 0.408743,
0.417146, 0.290858]

32m55.416s

5.2. RESULTS 129

 10

 100

 1000

 10000

 0 2 4 6 8 10 12

dimension

function evaluations
seconds

For d = 6, setting N = 150 did not improve the result either. Forcing our
stronger regularization for higher dimensions to start at d = 6 instead
of d = 7 improved the result for d = 6 and N = 150 to 0.000003 at

x=[0.413465,0.414506,0.415319,0.414102,0.415094,0.413376] in

7m11.201s, however doing so would break the convergence for other problems,
notably the 6-dimensional Rosenbrock function with DONLP2 as the local
optimizer, so we opted against that change.

Quadratic Objective as Implicit Equality Constraint

To get these examples to converge in a timely manner for dimensions 7
and higher, a few tweaks were needed. First of all, we had to set the
GLOBAL_SEARCH_IGNORES_EQ_CONSTRAINTS option for dimension 7 and higher,
because the LPs needed to approximate the implicit equality constraint for the
global search took too long to compute: without this option, solving d = 7 with
DONLP2 appeared to converge, but took over 3 hours! lp_solve also ran into
numerical problems in higher dimensions, which means most of that time was
wasted without �nding actual enclosures for our constraint. And secondly, we
had to increase the tolerance OPTIMUM_TOL (abbreviated as �tol� in the tables)
from the default .001 in higher dimensions because the tolerance could not be
reached, possibly partly due to the global search not being able to take the

130 CHAPTER 5. RESULTS

constraint into account. With DONLP2, we obtained the following results:
d N tol result timing
2 50 .001 −0.000608 at x=[0.414239, −0.000608] 0m0.509s
3 50 .001 −0.000804 at x=[0.414217, 0.414164, −0.000804] 0m0.579s
4 100 .001 0.000008 at x=[0.414357, 0.414898, 0.412877,

0.000008]
0m7.986s

5 100 .001 −0.000984 at x=[0.414299, 0.415849, 0.414732,
0.413624, −0.000984]

0m11.750s

6 150 .001 0.007643 at x=[0.396069, 0.455927, 0.455240,
0.420797, 0.345321, 0.007643]

1m12.683s

7 200 .01 0.000680 at x=[0.416074, 0.410845, 0.415781,
0.405332, 0.410764, 0.400547, 0.000680]

0m14.112s

8 300 .01 −0.001772 at x=[0.413609, 0.411803, 0.414844,
0.412973, 0.413767, 0.411765, 0.411749,
−0.001772]

0m43.814s

9 300 .1 −0.034728 at x=[0.413816, 0.401053, 0.410315,
0.397650, 0.415350, 0.411022, 0.466831, 0.447111,
−0.034728]

0m47.906s

10 300 .1 −0.039629 at x=[0.421163, 0.445016, 0.396696,
0.428404, 0.475153, 0.401993, 0.465980, 0.487537,
0.447921, −0.039629]

1m50.080s

11 500 .5 −0.046004 at x=[0.580370, 0.614280, 0.345878,
0.299603, 0.434615, 0.388781, 0.437947, 0.351515,
0.504935, 0.373158, −0.046004]

6m40.942s

5.2. RESULTS 131

 0.1

 1

 10

 100

 1000

 2 3 4 5 6 7 8 9 10 11

dimension

function evaluations
seconds

The reduction in computation time between dimensions 6 and 7 is due to the fact
that we disabled the LPs for the enclosure of the implicit equality constraint in
the global search for dimension 7 and higher, otherwise the computation time
would have increased signi�cantly instead.

With Ipopt, we obtained the following results:
d N tol result timing
2 50 .001 −0.000629 at x=[0.413773, −0.000629] 1m3.856s
3 50 .001 −0.000781 at x=[0.414208, 0.414219, −0.000781] 1m14.854s
4 50 .001 −0.000599 at x=[0.414420, 0.414073, 0.413959,

−0.000599]
0m53.872s

5 100 .001 0.000139 at x=[0.411850, 0.413529, 0.419301,
0.400990, 0.000139]

2m40.308s

6 100 .001 −0.000747 at x=[0.414288, 0.413886, 0.415680,
0.413546, 0.413768, −0.000747]

1m47.122s

7 500 .1 −0.098857 at x=[0.424909, 0.418121, 0.427544,
0.435220, 0.414645, 0.394952, −0.098857

3m37.305s

8 500 .5 −0.050436 at x=[0.405903, 0.372246, 0.260290,
0.504925, 0.207737, 0.740475, 0.222677,
−0.050436]

7m8.389s

132 CHAPTER 5. RESULTS

 10

 100

 1000

 2 3 4 5 6 7 8

dimension

function evaluations
seconds

Rosenbrock Function as Explicit Equality Constraint

With DONLP2, we obtained the following results:
d N result timing
2 200 0.001435 at x=[0.962191, 0.925574] 0m2.230s
3 200 0.011359 at x=[0.955130, 0.909057, 0.827020] 0m4.474s
4 200 0.008234 at x=[0.980435, 0.960568, 0.922109, 0.851505] 0m5.777s
5 300 0.046058 at x=[0.975658, 0.952061, 0.909707, 0.833079,

0.699526]
0m26.803s

6 300 0.020165 at x=[0.994074, 0.986399, 0.970718, 0.943735,
0.886766, 0.788724]

0m31.959s

7 500 0.053847 at x=[0.994816, 0.987393, 0.973595, 0.947083,
0.896174, 0.803800, 0.646551]

2m12.756s

5.2. RESULTS 133

 1

 10

 100

 1000

 2 3 4 5 6 7

dimension

function evaluations
seconds

With Ipopt, we could not obtain convergence even for d = 2:
d N result timing
2 200 0.135674 at x=[0.631745, 0.399890] 6m7.647s
Higher values for N didn't improve the solution either.

Rosenbrock Function as Implicit Equality Constraint

With DONLP2, we obtained the following results:
d N result timing
3 100 0.018488 at x=[1.016196,1.019243,0.018488] 0m4.896s
3 200 0.000040 at x=[0.995731,0.991338,0.000040] 0m18.634s
4 does not converge
With Ipopt, we could not obtain convergence even for d = 3.

134 CHAPTER 5. RESULTS

5.2.4 Graphical Representation

The following �gure shows the points evaluated for the original 2-dimensional
Rosenbrock function expressed as an explicit equality constraint
using DONLP2 as the local optimizer. The circles represent the
starting points, the X-es the points found by the global search and
the pluses connected by a line the points found by the local search.

-1

-0.5

 0

 0.5

 1

 1.5

 2

-1 -0.5 0 0.5 1 1.5 2

Chapter 6

Conclusion

In this chapter, we will wrap up our results and give an outlook about possible
future improvements to the algorithm.

6.1 Summary

We presented an algorithm applying methods from data analysis to the solution of
black box optimization problems. Using quadratic covariance models for heuristic
local function enclosure and Gaussian mixture models for global density estima-
tion, we constructed an optimization algorithm which can handle both objective
functions and constraints without any gradient or Hessian information. As we
need not compute any di�erence quotients, the number of required function evalu-
ations is low, so the algorithm lends itself particularly well to functions which are
expensive to evaluate. Our algorithm is an incomplete global optimization algo-
rithm: completeness cannot be achieved due to the lack of global information and
any asymptotical properties are of limited use because we expect our optimizer to
be used with expensive functions and thus a low cap on the number of function
evaluations. Thus, we did not pursue asymptotical completeness, but instead fo-
cused on density estimation aiming at �lling the gaps in the search space in an
optimal way given a �nite number of points, and taking the points found by the
local search into account.

We also presented a way to handle black box implicit equality constraints: our
local covariance models are formulated in a way naturally accounting for them; for
our global density models, we solve linear programs to �nd heuristic quadratic over-
and underestimators for each implicit equality constraint, which provide enclosures
for the feasible set. As the enclosures cannot be made rigorous due to the lack of
global information, we adjust them for each newly computed point, ensuring that
all known points are always within the current enclosures. As black box implicit

135

136 CHAPTER 6. CONCLUSION

equality constraints are still an active �eld of research, this is a signi�cant result.
We documented a working implementation of the above concepts, written in the

ISO C99 language [43, 44] and licensed under the GNU General Public License,
version 3 [45] or later, with special exceptions allowing to link with the third-
party optimizers used. The required third-party libraries are lp_solve for linear
programs and either DONLP2 or Ipopt, which requires MUMPS and implementations
of BLAS and LAPACK (we recommend ATLAS, which not only performs better than
the reference implementations, but also gave more accurate results in our tests),
for the non-linear surrogate and density models.

Finally, we tested our algorithm on a few low-dimensional example programs
from the COCONUT benchmark and performed some scalability tests. We ob-
tained satisfying results on the problems we tested: on the �ve low-dimensional
problems from the COCONUT benchmark we tested, convergence was obtained
in all cases, though we were unable to solve the Aljazzaf and Maratos examples to
full precision. The algorithm scales up to a dimension of around 15 for the simple
quadratic objective. It is also able to optimize the multidimensional Rosenbrock
function up to dimension 7. The problems with implicit equality constraints did
not scale as well, however we were able to optimize the 2-dimensional Rosenbrock
function as a 3-dimensional implicit equation to a very high precision. We observed
a strong dependence of the results on the local optimizer used: for some test cases,
the best result was obtained with DONLP2, for others with Ipopt; the result with
the other optimizer was often signi�cantly worse.

6.2 Outlook

While we were successful at proving the concept and obtained some very promising
results, there are several potential improvements which can be the subject of future
research.

As can be seen in the graphical representation, our global search produces many
points on the border of the box being searched and few points in the interior. Fine-
tuning the global search to produce more interior points is likely to improve global
convergence.

Another possible improvement may be obtained for the stopping criterion: cur-
rently, our algorithm always evaluates exactly the maximum number of points, it
is unable to verify whether convergence has already occurred or not. It is pos-
sible to obtain gradient estimates from the covariance matrices we compute: As
our covariance models are centered around the best point, the covariance Cxiyj

represents the expected value of (xi − xbesti)
(
yj − ybestj

)
, the variance Sxi

= Cxixi

the expected value of (xi − xbesti)
2, which allows us to approximate the directional

derivative ∂yj

∂xi
at xbest by the quotient

Cxiyj

Sxi
. We can also generalize this idea to

6.2. OUTLOOK 137

the multi-dimensional case and use the solution g of the linear system of equations
Cxxg = Cyjx as an estimate for the gradient of yj, which is more expensive to com-
pute, but more accurate, because it takes the correlation within the x variables
into account. (Gradient estimates can also be obtained in other ways, e.g. from
the eigenspaces of the covariance matrix.) These estimates may be used to verify
the Kuhn-Tucker conditions, and thus provide a stopping criterion.

Another possibility for the stopping criterion problem would be to allow for
interactively stopping the algorithm and still outputting the current optimum and
also to make it easy to restart the algorithm after an interruption. This might be
useful even in the presence of an improved automated stopping criterion, because
the user usually knows best when he or she is satis�ed with the result. We did not
implement this feature in our current implementation because our main goal was
to experiment with the mathematical concepts, not to implement a production
optimizer.

Implicit equality constraints in higher dimensions are another place where there
is de�nitely room for improvement. Most, if not all, algorithms currently on the
market fail to handle black box implicit equality constraints, so our algorithm
is pioneering this domain. In the lowest dimensions, our algorithm handles such
constraints very well, but in medium to high dimensions (starting at around 5 to 7),
we ran into both numerical and speed-related di�culties with our linear programs.
One approach might be �nding a way to get the size of the linear programs under
control even in higher dimensions. Another approach worth trying would be solving
the linear programs with an interior point method rather than the simplex method.

The extrapolation technique used to obtain feasible points with good objective
function values in the presence of implicit equality constraints could also be a target
for improvement: when it works, it usually produces very good points, however
sometimes the extrapolation matrix is too ill-conditioned and sometimes bad input
points are missed by the outlier detection and force bad extrapolated points.

Given the high sensitivity of the results to the local optimizer used for the
surrogate and density models, it would be worthwhile to try other local optimizers,
such as KNITRO. It might even be worth a try to run a global optimizer on the global
density models.

Finally, the current implementation is a prototype and does not always use
the most e�cient algorithms for its computations. To get it to scale to higher
dimensions, optimizing the implementation for speed may be worthwhile.

138 CHAPTER 6. CONCLUSION

Bibliography

[1] H. Schichl: Optimierung. Lecture notes. Universität Wien, 2004.

[2] H. Schichl: Globale Optimierung. Lecture notes. Universität Wien, 2005.

[3] A. Neumaier: Complete Search in Continuous Global Optimization and Con-
straint Satisfaction. Acta Numerica 2004 (A. Iserles, ed.). Cambridge Univer-
sity Press 2004, pp. 271�369.

[4] J. Nocedal: Theory of algorithms for unconstrained optimization. Acta Nu-
merica 1992 (A. Iserles, ed.), pp. 199�242. Cambridge Univ. Press, Cambridge,
1992.

[5] A. Fiacco and G.P. McCormick: Sequential Unconstrained Minimization
Techniques. Classics in Applied Mathematics 4. SIAM, Philadelphia, 1990.

[6] R. Fletcher and S. Ley�er: Nonlinear programming without a penalty func-
tion. Mathematical Programming, 91:239�270, 2002.

[7] R. Fletcher, S. Ley�er and Ph.L. Toint: A Brief History of Filter Methods.
SIAG/Optimization Views-and-News, 18(1):2�12, 2007.

[8] A.D. Padula: Introduction to SQP Methods. Online slides. http://www.

caam.rice.edu/~adpadu/

[9] A.R. Conn, N.I.M. Gould, and Ph.L. Toint: Trust Region Methods (Section
15.1�15.3). MPS/SIAM Series on Optimization. SIAM, Philadelphia 2000.

[10] T.S. Motzkin and E.G. Straus: Maxima for graphs and a new proof of a
theorem of turan. Canad. J. Math. 17(4):533�540, 1965.

[11] S. Kirkpatrick, C.D. Geddat, Jr., and M.P. Vecchi: Optimization by simulated
annealing. Science 220 (1983), pp. 671�680.

[12] L. Ingber: Simulated annealing: Practice versus theory. Math. Comput. Mod-
elling 18 (1993), pp. 29�57.

139

140 BIBLIOGRAPHY

[13] P.J.M. Van Laarhoven and E.H.L. Aarts: Simulated Annealing: Theory and
Applications. Kluwer, Dordrecht, 1987.

[14] J. Holland: Genetic algorithms and the optimal allocation of trials. SIAM J.
Computing 2 (1973), pp. 88�105.

[15] S. Forrest: Genetic algorithms: principles of natural selection applied to com-
putation. Science 261 (1993), pp. 872�878.

[16] Z. Michalewicz: Genetic Algorithm + Data Structures = Evolution Programs,
3rd ed. Springer, New York, 1996.

[17] M. Dorigo, V. Maniezzo and A. Colorni: The ant system: optimization by a
colony of cooperating agents. IEEE Trans. Systems, Man, Cyber. Part B, 26
(1991), pp. 29�41.

[18] M. Dorigo, P. Balaprakash and M.A. Montes de Oca: Ant Colony Optimiza-
tion. Web page. http://www.aco-metaheuristic.org/

[19] D.R. Jones, C.D. Perttunen and B.E. Stuckman: Lipschitzian optimization
without the Lipschitz constant. J. Optimization Th. Appl. 79 (1993), pp.
157�181.

[20] A. Törn and A. �ilinskas: Global Optimization. Lecture Notes in Computer
Science, Vol. 350. Springer-Verlag, Berlin, 1989.

[21] W. Huyer and A. Neumaier: Global optimization by multilevel coordinate
search. J. Global Optimization 14 (1999), pp. 331�355.

[22] A. Neumaier: Mathematische Methoden der Datenanalyse. Lecture notes.
Universität Wien, 2004.

[23] A. Flexer: AI Methoden der Datenanalyse. Lecture notes. Medizinische Uni-
versität Wien, 2006.

[24] P.R. Wolf and C.D. Ghilani: Adjustment Computations. John Wiley and
Sons, Inc., New York, 1997.

[25] J.H. Wolfe: Pattern clustering by multivariate mixture analysis. Multivariate
Behavioral Research, 5 (1970), pp. 329�350.

[26] A. Dempster, N. Laird and D. Rubin: Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society, Series B,
39(1):1�38, 1977.

BIBLIOGRAPHY 141

[27] D.M.J. Tax, R.P.W. Duin: Outlier detection using classi�er instability. Amin
A. et al. (eds.), Advances in Pattern Recognition, Proc. Jont IAPR Int. Work-
shop SSPR'98 and SPR'98. Lecture Notes in Computer Science, Springer, pp.
593�601, 1998.

[28] A. Flexer, E. Pampalk and G. Widmer: Novelty detection based on spec-
tral similarity of songs. Proceedings of 6th International Conference on Music
Information Retrieval, pp. 260�263, September 2005.

[29] W.H. Jones: Derivation: Cubic Regression. NASA, 2000. http://www.grc.
nasa.gov/WWW/price000/lap/htm/derivation_cubicregression.html

[30] P. Spellucci: DONLP2. Software package downloadable from
http://www.mathematik.tu-darmstadt.de:8080/ags/ag8/Mitglieder/

spellucci_en.html

[31] P. Spellucci: An SQP method for general nonlinear programs using only equal-
ity constrained subproblems. Math. Prog. 82 (1998), pp. 413�448.

[32] P. Spellucci: A new technique for inconsistent problems in the SQP method.
Math. Meth. of Oper. Res. 47, (1998), 355�400. Physica Verlag, Heidelberg,
Germany.

[33] A. Wächter et al.: Ipopt. Software package downloadable from https://

projects.coin-or.org/Ipopt

[34] A. Wächter and L. T. Biegler: On the Implementation of a Primal-Dual
Interior Point Filter Line Search Algorithm for Large-Scale Nonlinear Pro-
gramming. Mathematical Programming 106(1), pp. 25�57, 2006.

[35] P. Amestoy, I. Du�, A. Guermouche, J. Koster, J.-Y. L'Excellent, S.
Pralet et al.: MUMPS. Software package downloadable from http://graal.

ens-lyon.fr/MUMPS/

[36] P.R. Amestoy, I.S. Du� and J.-Y. L'Excellent: Multifrontal parallel dis-
tributed symmetric and unsymmetric solvers. Comput. Methods in Appl.
Mech. Eng., 184, pp. 501�520, 2000.

[37] P.R. Amestoy, I.S. Du�, J. Koster and J.-Y. L'Excellent: A fully asynchronous
multifrontal solver using distributed dynamic scheduling. SIAM Journal of
Matrix Analysis and Applications, Vol 23, No 1, pp. 15�41, 2001.

[38] P.R. Amestoy, A. Guermouche, J.-Y. L'Excellent and S. Pralet: Hybrid
scheduling for the parallel solution of linear systems. Parallel Computing Vol
32 (2), pp. 136�156, 2006.

142 BIBLIOGRAPHY

[39] M. Berkelaar, P. Notebaert, K. Eikland et al.: lp_solve. Software package
downloadable from http://groups.yahoo.com/group/lp_solve/

[40] G.B. Dantzig: Computational Algorithm of the Revised Simplex Method.
Rand Corporation, 1953.

[41] I. Nowak and S. Vigerske: LaGO. Software package downloadable from
https://projects.coin-or.org/LaGO

[42] I. Nowak and S. Vigerske: LaGO - a (heuristic) Branch and Cut algo-
rithm for nonconvex MINLPs. Preprint, Institut für Mathematik, Humboldt-
Universität zu Berlin (ISSN 0863-0976), 12. http://www.mathematik.

hu-berlin.de/publ/pre/2006/P-06-24.ps

[43] ISO C Working Group JTC1/SC22/WG14: ISO/IEC 9899:1999 � Program-
ming languages � C. International Organization for Standardization, 1999.

[44] ISO C Working Group JTC1/SC22/WG14: WG14/N1124 � ISO/IEC
9899:TC2. Committee draft, 2005. http://www.open-std.org/jtc1/sc22/
wg14/www/docs/n1124.pdf

[45] Free Software Foundation: GNU General Public License, Version 3. Free Soft-
ware Foundation, 2007. http://www.gnu.org/licenses/gpl-3.0.html

[46] GamsWorld group et al.: GLOBAL Library. GAMS World. http://www.
gamsworld.org/global/globallib.htm

[47] O. Shcherbina et al.: COCONUT Benchmark. Package downloadable
from http://www.mat.univie.ac.at/~neum/glopt/coconut/Benchmark/

Benchmark.html

[48] O. Shcherbina, A. Neumaier, D. Sam-Haroud, Xuan-Ha Vu and Tuan-Viet
Nguyen, Benchmarking global optimization and constraint satisfaction codes.
Ch. Bliek, Ch. Jermann and A. Neumaier (eds.), Global Optimization and
Constraint Satisfaction, pp. 211�222. Springer, Berlin 2003.

[49] H. Schichl et al.: COCONUT Environment. Software package downloadable
from http://www.mat.univie.ac.at/coconut-environment/

[50] C.A. Floudas, P.M. Pardalos, C.S. Adjiman, W.R. Esposito, Z.H. Gümüs,
S.T. Harding, J.L. Klepeis, C.A. Meyer and C.A. Schweiger: Handbook of
Test Problems in Local and Global Optimization. Kluwer, Dordrecht 1999.

BIBLIOGRAPHY 143

[51] B. Vanderbei, H.Y. Benson et al.: Cute Models. Package download-
able from http://www.sor.princeton.edu/~rvdb/ampl/nlmodels/cute/

index.html

[52] Free Software Foundation: GNU Library General Public License, Ver-
sion 2. Free Software Foundation, 1991. http://www.gnu.org/licenses/

old-licenses/library.html

