

The DynGenPar Algorithm on an Example and a comparison with existing approaches

Kevin Kofler and Arnold Neumaier

University of Vienna, Faculty of Mathematics

July 16, 2011

Contents ●	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach
Contents				

Acknowledgements

The Example

Existing Approaches Top-Down Parsing

Bottom-Up Parsing

The DynGenPar Approach

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements ●	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 0000000000000000
Acknowledgem	ents			

Acknowledgements

Support by the Austrian Science Fund (FWF) under contract number P20631 is gratefully acknowledged.

Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example ●	Existing Approaches 000 00000	The DynGenPar Approach
The Example				

Example Grammar

- simple grammar for unconstrained polynomial optimization problems
- $N = \{S, Task, Expr, Term, Factor\}$
- $T = \{\min, \max, +, *, x, \text{NUMBER}\}$
- ▶ $S \rightarrow \text{Task Expr}$
- Task \rightarrow min | max
- Expr \rightarrow Expr + Term | Term
- Term \rightarrow Term * Factor | Factor
- Factor $\rightarrow x \mid \text{NUMBER}$
- Example sentence: min x * x

Contents O	Acknowledgements O	The Example O	Existing Approaches ●00 ○0000	The DynGenPar Approach
Top-Down Parsi	ng			

Example Top-Down Parsing (1/3)

- input: . min x * x (dot . . . cursor position)
- current sentence form: . S
- current parse tree: S
- ▶ apply $S \rightarrow \text{Task Expr}$

University of Vienna, Faculty of Mathematics

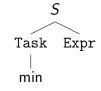
Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example 0	Existing Approaches 0●0 00000	The DynGenPar Approach
Top-Down Parsi	ng			

Example Top-Down Parsing (2/3)

- input: .min x * x (dot ... cursor position)
- current sentence form: . Task Expr
- current parse tree:

- possible choices:
 - $1. \ \text{Task} \to \text{min}$
 - 2. Task \rightarrow max
- only rule 1 matches input token min
- ▶ apply Task \rightarrow min


University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example 0	Existing Approaches 00● 00000	The DynGenPar Approach
Top-Down Parsin	g			

Example Top-Down Parsing (3/3)

- min is already a terminal, accept it
- input: min. x * x (dot ... cursor position)
- current sentence form: min. Expr
- current parse tree:

- possible choices:
 - 1. $\texttt{Expr} \to \texttt{Expr} + \texttt{Term}$
 - $\textbf{2. Expr} \rightarrow \texttt{Term}$
- Problem: Which rule to apply? (Left recursion!)

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements 0	The Example O	Existing Approaches 000 00000	The DynGenPar Approach
Bottom-Up Pars	sing			

Example Bottom-Up Parsing (1/5)

- current sentence form: . min x * x (dot ... cursor position)
- no input read in yet
 - thus cannot reduce anything
- only option: shift a token

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents	Acknowledgements	The Example	Existing Approaches	The DynGenPar Approach
			ŏ ● ŏoo	
Bottom-Up Pa	rsing			

Example Bottom-Up Parsing (2/5)

- current sentence form: min. x * x
- left of the cursor: min
 - \blacktriangleright right hand side of Task \rightarrow min
- no further shift makes sense
 - \nexists rule $X \rightarrow \min \ldots$
- \blacktriangleright thus reduce Task \rightarrow min

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents	Acknowledgements	The Example	Existing Approaches	The DynGenPar Approach
			000 00000	
Bottom-Up Pa	Irsing		00000	

Example Bottom-Up Parsing (3/5)

- current sentence form: Task . x * x
- left of the cursor: Task
 - not the right hand side of a rule
 - start of $S \to \text{Task Expr}$
 - thus need more tokens
- perform a shift step

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example 0	Existing Approaches ○○○ ○○○●○	The DynGenPar Approach
Bottom-Up Parsi	ng			

Example Bottom-Up Parsing (4/5)

- current sentence form: Task x . * x
- ▶ reduce step: Factor $\rightarrow x$
- current sentence form: Task Factor . * x
- ▶ reduce step: Term \rightarrow Factor
- current sentence form: Task Term . * x
- what not?
 - ▶ reduce Expr → Term?
 - or shift step?
 - for that, consider the token after the cursor
 - ▶ 1 Token Lookahead \rightsquigarrow LR(1) method
 - with lookahead *, only a shift makes sense

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example O	Existing Approaches ○○○ ○○○○●	The DynGenPar Approach
Bottom-Up Pa	arsing			

Example Bottom-Up Parsing (5/5)

- current sentence form: Task Term * . x
- shift step
- current sentence form: Task Term * x .
- ▶ reduce step: Factor $\rightarrow x$
- current sentence form: Task Term * Factor .
- ▶ reduce step: Term → Term * Factor
- current sentence form: Task Term .
- lookahead empty, no more shift possible
 - ▶ reduce step: $\texttt{Expr} \rightarrow \texttt{Term}$
- current sentence form: Task Expr .
- lookahead empty, no more shift possible
 - ▶ reduce step: $S \rightarrow \text{Task Expr}$
- we obtain the sentence form: $S : \Rightarrow$ done!

Initial Graph

- replaces precompiled tables
 - dynamically extensible for new rules
- directed, labeled multigraph on $\Gamma = N \cup T$
- ► tokens *T* are sources
- edge from symbol $s \in \Gamma$ to category $n \in N$ iff
 - ▶ \exists rule $n \rightarrow n_1 \ n_2 \ \dots \ n_k \ s \ \dots$ with $n_i \in N_0 \ \forall i$
 - where N₀ ⊆ N the set of all nonterminals from which ε can be derived
 - label of the edge
 - that rule
 - number k of n_i set to ε
 - more than one possible label ... multi-edge

Kevin Kofler and Arnold Neumaier

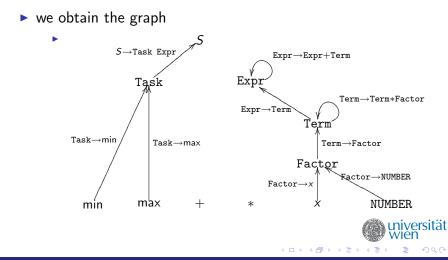
The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach ⊙●○○○○○○○○○○○○○○
The DynGenPar	r Approach			

Example Initial Graph (1/2)

- Example grammar
 - $N = \{S, Task, Expr, Term, Factor\}$
 - $T = \{\min, \max, +, *, x, \text{NUMBER}\}$
 - $S \rightarrow \texttt{Task Expr}$
 - Task \rightarrow min | max
 - Expr \rightarrow Expr + Term | Term
 - $\blacktriangleright \texttt{Term} \rightarrow \texttt{Term} * \texttt{Factor} \mid \texttt{Factor}$
 - Factor $\rightarrow x \mid \text{NUMBER}$

• $N_0 = \emptyset$


- because there is no rule $n \rightarrow \varepsilon$ in the grammar
- thus consider only rules of the form $n \to s \dots$
- ▶ k (number of skipped ɛ categories) = 0 everywhere

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements 0	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 00●00000000000000
The DynGenPa	r Approach			

Example Initial Graph (2/2)

Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example 0	Existing Approaches 000 00000	The DynGenPar Approach 000●000000000000
The DynGenPa	r Approach			

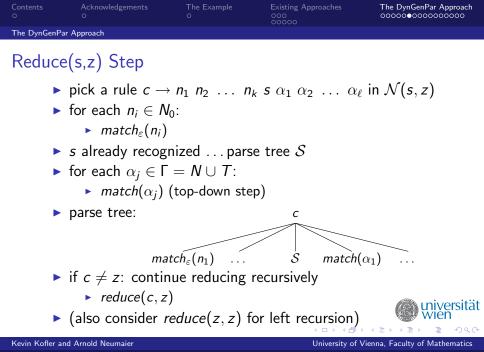
Neighborhoods

- ▶ Let $s \in \Gamma = N \cup T$ (symbol), $z \in N$ (target)
- Neighborhood $\mathcal{N}(s, z)$. . .
 - Edges from s to a category c where
 - ► z reachable from c
- in the example
 - $\mathcal{N}(\min, S) = \{ \mathtt{Task} \to \min \}$
 - $\mathcal{N}(x,S) = \emptyset$
 - $\mathcal{N}(x, \texttt{Expr}) = \{\texttt{Factor} \rightarrow x\}$
 - $\blacktriangleright \ \mathcal{N}(\texttt{Term},\texttt{Expr}) = \{\texttt{Expr} \rightarrow \texttt{Term},\texttt{Term} \rightarrow \texttt{Term} * \texttt{Factor}\}$
- computed by graph walk
- can be cached
 - but must be recomputed if the grammar changes

Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example 0	Existing Approaches 000 00000	The DynGenPar Approach
The DynGenPa	r Approach			


Operations

- $match_{\varepsilon}(n), n \in N_0 \dots$ derive ε from n
 - top-down
 - ignore recursion (would produce ∞ ly many parse trees)
- shift ... read in the next token
- $reduce(s, z), s \in \Gamma, z \in N...$ reduce s to z
 - different from LR reduce!
 - already reduce after the first symbol
 - reduce must complete the match
- $match(s), s \in \Gamma = N \cup T$
 - if $s \in N_0$: $match_{\varepsilon}(s)$, remember result
 - ► t = shift
 - if $s \in T$: compare s with t
 - if $s \in N$: reduce(t, s)

University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example 0	Existing Approaches 000 00000	The DynGenPar Approach 000000●000000000
The DynGenPar	Approach			

Example DynGenPar Algorithm (1/9)

- ▶ in the example: $N_0 = \emptyset \Rightarrow$ no $match_{\varepsilon}$ steps
- input: .min x * x (dot ... cursor position)
- begin with match(S) (start category)
 - shift step produces min
 - next step: reduce(min, S)
 - input now: min . x * x

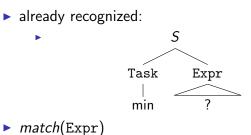
Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 0000000●00000000
The DynGenPar	Approach			

Example DynGenPar Algorithm (2/9)

- reduce(min, S)
 - $\mathcal{N}(\min, S) = \{ \mathtt{Task} \to \min \}$
 - \blacktriangleright thus reduce Task \rightarrow min
 - k = 0 (no n_i), $\ell = 0$ (no α_j)
 - thus continue with reduce(Task, S)
 - $\mathcal{N}(\texttt{Task}, S) = \{S \rightarrow \texttt{Task Expr}\}$
 - ▶ thus reduce $S \rightarrow \texttt{Task} \texttt{Expr}$
 - ▶ now we have an α_j: α₁ = Expr
 - thus match(Expr)
 - ▶ then reduce complete, because S is already the goal



University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example 0	Existing Approaches 000 00000	The DynGenPar Approach 00000000●0000000
The DynGenPar	Approach			

Example DynGenPar Algorithm (3/9)

- shift step produces x
- next step: reduce(x,Expr)
- input now: min x . * x

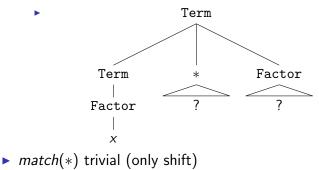
universität wien

Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example

Contents O	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 000000000000000000
The DynGenPa	r Approach			

Example DynGenPar Algorithm (4/9)


- reduce(x, Expr)
 - $\mathcal{N}(x, \texttt{Expr}) = \{\texttt{Factor} \rightarrow x\}$
 - continue with reduce(Factor, Expr)
 - $\mathcal{N}(\texttt{Factor},\texttt{Expr}) = \{\texttt{Term} \rightarrow \texttt{Factor}\}$
 - continue with reduce(Term, Expr)
 - $\blacktriangleright \ \mathcal{N}(\texttt{Term},\texttt{Expr}) = \{\texttt{Expr} \rightarrow \texttt{Term},\texttt{Term} \rightarrow \texttt{Term} * \texttt{Factor}\}$
 - reduce-reduce conflict
 - must consider both possibilities
 - ► Expr → Term: reduce(x, Expr) and thus match(Expr) terminates (or try reducing Expr → Expr+Term ⇒ error), thus also reduce(min, S) and match(S), but the input is not consumed yet ⇒ error
 - $\blacktriangleright \ \ \mathsf{thus} \ \mathsf{reduce} \ \mathtt{Term} \to \mathtt{Term} \ast \mathtt{Factor}$
 - thus match(*) and match(Factor)

niversität

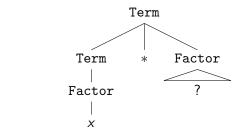
Contents O	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 00000000000000000
The DynGenPar	Approach			

Example DynGenPar Algorithm (5/9)

already recognized:

iversität

University of Vienna, Faculty of Mathematics


input now: min x * . x

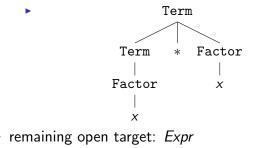
Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements O	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 000000000000000000000000000000000000
The DynGenPar	Approach			

Example DynGenPar Algorithm (6/9)

already recognized:

- match(Factor)
 - shift step produces x
 - next step: reduce(x,Factor)
 - input now consumed: min x * x .


University of Vienna, Faculty of Mathematics

Kevin Kofler and Arnold Neumaier

Example DynGenPar Algorithm (7/9)

- reduce(x,Factor)
 - $\mathcal{N}(x, \texttt{Factor}) = \{\texttt{Factor} \rightarrow x\}$
 - so we are already done
- Term recognized completely

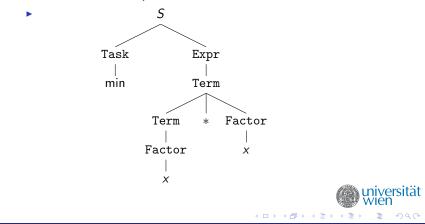
thus continue with another reduce(Term, Expr)

Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements 0	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 000000000000000000000000000000000000
The DynGenPa	r Approach			

Example DynGenPar Algorithm (8/9)

- reduce(Term, Expr)
 - $\blacktriangleright \ \mathcal{N}(\texttt{Term},\texttt{Expr}) = \{\texttt{Expr} \rightarrow \texttt{Term},\texttt{Term} \rightarrow \texttt{Term} * \texttt{Factor}\}$
 - again 2 possibilities
 - this time, Term \rightarrow Term*Factor fails (out of input)
 - $\blacktriangleright \ \text{thus reduce Expr} \to \texttt{Term}$
 - continue with reduce(Expr, Expr)
 - Expr \rightarrow Expr+Term fails (out of input)
 - thus we are done
- and so the input has been recognized completely



Kevin Kofler and Arnold Neumaier

Contents O	Acknowledgements 0	The Example O	Existing Approaches 000 00000	The DynGenPar Approach 000000000000000000000000000000000000
The DynGenPa	r Approach			

Example DynGenPar Algorithm (9/9)

▶ we obtain the same parse tree as for LR:

Kevin Kofler and Arnold Neumaier

The DynGenPar Algorithm on an Example