
The DynGenPar Algorithm on an Example
and a comparison with existing approaches

Kevin Kofler and Arnold Neumaier

University of Vienna, Faculty of Mathematics

July 16, 2011

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Contents

Acknowledgements

The Example

Existing Approaches
Top-Down Parsing
Bottom-Up Parsing

The DynGenPar Approach

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Acknowledgements

Acknowledgements

Support by the Austrian Science Fund (FWF) under contract
number P20631 is gratefully acknowledged.

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The Example

Example Grammar

I simple grammar for unconstrained polynomial
optimization problems

I N = {S , Task, Expr, Term, Factor}
I T = {min,max,+, ∗, x , NUMBER}
I S → Task Expr

I Task→ min | max

I Expr→ Expr + Term | Term
I Term→ Term ∗ Factor | Factor
I Factor→ x | NUMBER
I Example sentence: min x ∗ x

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Top-Down Parsing

Example Top-Down Parsing (1/3)

I input: .min x ∗ x (dot . . . cursor position)

I current sentence form: . S

I current parse tree: S

I apply S → Task Expr

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Top-Down Parsing

Example Top-Down Parsing (2/3)

I input: .min x ∗ x (dot . . . cursor position)

I current sentence form: . Task Expr

I current parse tree: S

Task Expr

I possible choices:

1. Task→ min
2. Task→ max

I only rule 1 matches input token min

I apply Task→ min

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Top-Down Parsing

Example Top-Down Parsing (3/3)

I min is already a terminal, accept it

I input: min . x ∗ x (dot . . . cursor position)

I current sentence form: min . Expr

I current parse tree: S

Task

min

Expr

I possible choices:

1. Expr→ Expr + Term
2. Expr→ Term

I Problem: Which rule to apply? (Left recursion!)

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Bottom-Up Parsing

Example Bottom-Up Parsing (1/5)

I current sentence form: .min x ∗ x (dot . . . cursor position)

I no input read in yet
I thus cannot reduce anything

I only option: shift a token

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Bottom-Up Parsing

Example Bottom-Up Parsing (2/5)

I current sentence form: min . x ∗ x

I left of the cursor: min
I right hand side of Task→ min

I no further shift makes sense
I @ rule X → min . . .

I thus reduce Task→ min

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Bottom-Up Parsing

Example Bottom-Up Parsing (3/5)

I current sentence form: Task . x ∗ x

I left of the cursor: Task

I not the right hand side of a rule
I start of S → Task Expr
I thus need more tokens

I perform a shift step

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Bottom-Up Parsing

Example Bottom-Up Parsing (4/5)

I current sentence form: Task x . ∗ x

I reduce step: Factor→ x

I current sentence form: Task Factor . ∗ x

I reduce step: Term→ Factor

I current sentence form: Task Term . ∗ x

I what not?
I reduce Expr→ Term?
I or shift step?
I for that, consider the token after the cursor

I 1 Token Lookahead LR(1) method

I with lookahead ∗, only a shift makes sense

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

Bottom-Up Parsing

Example Bottom-Up Parsing (5/5)
I current sentence form: Task Term ∗ . x
I shift step
I current sentence form: Task Term ∗ x .
I reduce step: Factor→ x
I current sentence form: Task Term ∗ Factor .
I reduce step: Term→ Term ∗ Factor
I current sentence form: Task Term .
I lookahead empty, no more shift possible

I reduce step: Expr→ Term
I current sentence form: Task Expr .
I lookahead empty, no more shift possible

I reduce step: S → Task Expr
I we obtain the sentence form: S . ⇒ done!

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Initial Graph

I replaces precompiled tables
I dynamically extensible for new rules

I directed, labeled multigraph on Γ = N ∪ T

I tokens T are sources

I edge from symbol s ∈ Γ to category n ∈ N iff
I ∃ rule n→ n1 n2 . . . nk s . . . with ni ∈ N0 ∀i

I where N0 ⊆ N the set of all nonterminals from which ε
can be derived

I label of the edge
I that rule
I number k of ni set to ε

I more than one possible label . . . multi-edge

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example Initial Graph (1/2)

I Example grammar
I N = {S , Task, Expr, Term, Factor}
I T = {min,max,+, ∗, x , NUMBER}
I S → Task Expr
I Task→ min | max
I Expr→ Expr + Term | Term
I Term→ Term ∗ Factor | Factor
I Factor→ x | NUMBER

I N0 = ∅
I because there is no rule n→ ε in the grammar
I thus consider only rules of the form n→ s . . .
I k (number of skipped ε categories) = 0

everywhere

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example Initial Graph (2/2)

I we obtain the graph
I S

Task

S→Task Expr

<<yyyyyyyyy Expr

Expr→Expr+Term

Term
Expr→Term

eeKKKKKKKKKK
Term→Term∗Factor

��

Factor

Term→Factor

OO

min

Task→min

HH�������������������
max

Task→max

OO

+ ∗ x

Factor→x

OO

NUMBER

Factor→NUMBER

ffMMMMMMMMMMM

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Neighborhoods

I Let s ∈ Γ = N ∪ T (symbol), z ∈ N (target)
I Neighborhood N (s, z) . . .

I Edges from s to a category c where
I z reachable from c

I in the example
I N (min, S) = {Task→ min}
I N (x ,S) = ∅
I N (x , Expr) = {Factor→ x}
I N (Term, Expr) = {Expr→ Term, Term→ Term ∗ Factor}

I computed by graph walk
I can be cached

I but must be recomputed if the grammar
changes

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Operations

I matchε(n), n ∈ N0 . . . derive ε from n
I top-down
I ignore recursion (would produce ∞ly many parse trees)

I shift . . . read in the next token
I reduce(s, z), s ∈ Γ, z ∈ N . . . reduce s to z

I different from LR reduce!
I already reduce after the first symbol
I reduce must complete the match

I match(s), s ∈ Γ = N ∪ T
I if s ∈ N0: matchε(s), remember result
I t = shift
I if s ∈ T : compare s with t
I if s ∈ N: reduce(t, s)

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Reduce(s,z) Step

I pick a rule c → n1 n2 . . . nk s α1 α2 . . . α` in N (s, z)
I for each ni ∈ N0:

I matchε(ni)

I s already recognized . . . parse tree S
I for each αj ∈ Γ = N ∪ T :

I match(αj) (top-down step)

I parse tree: c

matchε(n1) . . . S match(α1) . . .

I if c 6= z : continue reducing recursively
I reduce(c, z)

I (also consider reduce(z , z) for left recursion)

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (1/9)

I in the example: N0 = ∅ ⇒ no matchε steps

I input: .min x ∗ x (dot . . . cursor position)

I begin with match(S) (start category)
I shift step produces min
I next step: reduce(min,S)
I input now: min . x ∗ x

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (2/9)

I reduce(min, S)
I N (min, S) = {Task→ min}
I thus reduce Task→ min
I k = 0 (no ni), ` = 0 (no αj)
I thus continue with reduce(Task, S)

I N (Task,S) = {S → Task Expr}
I thus reduce S → Task Expr
I now we have an αj : α1 = Expr
I thus match(Expr)
I then reduce complete, because S is already the goal

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (3/9)

I already recognized:
I S

Task

min

Expr

?

I match(Expr)
I shift step produces x
I next step: reduce(x , Expr)
I input now: min x . ∗ x

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (4/9)

I reduce(x , Expr)
I N (x , Expr) = {Factor→ x}
I continue with reduce(Factor, Expr)
I N (Factor, Expr) = {Term→ Factor}
I continue with reduce(Term, Expr)
I N (Term, Expr) = {Expr→ Term, Term→ Term ∗ Factor}

I reduce-reduce conflict
I must consider both possibilities
I Expr→ Term: reduce(x , Expr) and thus match(Expr)

terminates (or try reducing Expr→ Expr+Term ⇒
error), thus also reduce(min,S) and match(S), but the
input is not consumed yet ⇒ error

I thus reduce Term→ Term ∗ Factor
I thus match(∗) and match(Factor)

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (5/9)

I already recognized:
I Term

Term

Factor

x

∗

?

Factor

?

I match(∗) trivial (only shift)

I input now: min x ∗ . x

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (6/9)

I already recognized:
I Term

Term

Factor

x

∗ Factor

?

I match(Factor)
I shift step produces x
I next step: reduce(x , Factor)
I input now consumed: min x ∗ x .

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (7/9)

I reduce(x , Factor)
I N (x , Factor) = {Factor→ x}
I so we are already done

I Term recognized completely
I Term

Term

Factor

x

∗ Factor

x

I remaining open target: Expr
I thus continue with another reduce(Term, Expr)

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (8/9)

I reduce(Term, Expr)
I N (Term, Expr) = {Expr→ Term, Term→ Term ∗ Factor}

I again 2 possibilities
I this time, Term→ Term∗Factor fails (out of input)
I thus reduce Expr→ Term
I continue with reduce(Expr, Expr)
I Expr→ Expr+Term fails (out of input)
I thus we are done

I and so the input has been recognized completely

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

Contents Acknowledgements The Example Existing Approaches The DynGenPar Approach

The DynGenPar Approach

Example DynGenPar Algorithm (9/9)

I we obtain the same parse tree as for LR:
I S

Task

min

Expr

Term

Term

Factor

x

∗ Factor

x

Kevin Kofler and Arnold Neumaier University of Vienna, Faculty of Mathematics

The DynGenPar Algorithm on an Example

	Contents
	

	Acknowledgements
	

	The Example
	

	Existing Approaches
	Top-Down Parsing
	Bottom-Up Parsing

	The DynGenPar Approach
	

