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Abstract. This paper introduces DynGenPar, a dynamic generalized
parser under development, aimed primarily at natural mathematical
language. Our algorithm aims at uniting the efficiency of LR or GLR
parsing, the dynamic extensibility of tableless approaches and the ex-
pressiveness of extended context-free grammars such as parallel multiple
context-free grammars (PMCFGs). In particular, it supports efficient
dynamic rule additions to the grammar at any moment. The algorithm
is designed in a fully incremental way, allowing to resume parsing with
additional tokens without restarting the parse process, and can predict
possible next tokens. Additionally, we handle constraints on the token
following a rule, which allows for grammatically correct English indef-
inite articles when working with word tokens and which can represent
typical operations for scannerless parsing such as maximal matches when
working with character tokens. Our long-term goal is to computerize a
large library of existing mathematical knowledge using the new parser.
This paper presents the algorithmic ideas behind our approach.
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1 Introduction

The primary target application for our algorithm is the FMathL (Formal Math-
ematical Language) project [7]. FMathL is the working title for a modeling and
documentation language for mathematics, suited to the habits of mathemati-
cians, to be developed in a project at the University of Vienna. The project
complements efforts for formalizing mathematics from the computer science and
automated theorem proving perspective. In the long run, the FMathL system
might turn into a user-friendly automatic mathematical assistant for retrieving,
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editing, and checking mathematics (but also computer science and theoretical
physics) in both informal, partially formalized, and completely formalized math-
ematical form.

Our application imposes several design requirements on our parser. It must:

– allow the efficient incremental addition of new rules to the grammar (e.g.,
when a definition is encountered in a mathematical text) at any time, without
recompiling the whole grammar;

– be able to parse more general grammars than just LR(1) or LALR(1) ones
– natural language is usually not LR(1), and being able to parse so-called
parallel multiple context-free grammars (PMCFGs) [10] is also a necessity
for reusing the natural language processing facilities of the Grammatical
Framework (GF) [8, 9];

– exhaustively produce all possible parse trees (in a packed representation), in
order to allow later semantic analysis to select the correct alternative from
an ambiguous parse, at least as long as their number is finite;

– support processing text incrementally and predicting the next token (pre-
dictive parsing);

– be transparent enough to allow formal verification and implementation of
error correction in the future;

– support both scanner-driven (for common mathematical language) and scan-
nerless (for some other parsing tasks in our implementation) operation.

These requirements, especially the first one, rule out all efficient parsers currently
in use.

We approach this with an algorithm loosely modeled on Generalized LR
[11, 12], but with an important difference: to decide when to shift a new token
and which rule to reduce when, instead of complex LR states which are mostly
opaque entities in practice, which have to be recomputed completely each time
the grammar changes and which can grow very large for natural-language gram-
mars, we use a graph, the initial graph, which is easy and efficient to update
incrementally as new rules are added to the grammar, along with runtime top-
down information. The details will be presented in the next section.

This approach allows our algorithm to be both dynamic:

– The grammar is not fixed in advance.
– Rules can be added at any moment, even during the parsing process.
– No tables are required. The graph we use instead can be updated very effi-

ciently as rules are added.

and generalized :

– The algorithm can parse general PMCFGs.
– For ambiguous grammars, all possible syntax trees are produced.

We have made significant progress towards the implementation of a proto-
type parser along the lines described. We expect a fully developed version of



this parsing algorithm to allow parsing a large subset of common mathemati-
cal language and help building a large database of computerized mathematical
knowledge. Additionally, we envision potential applications outside of mathe-
matics, e.g., for domain-specific languages for special applications [6]. These are
currently mainly handled by scannerless parsing using GLR [13] for context-free
grammars (CFGs), but would benefit a lot from our incremental approach.

2 The DynGenPar Algorithm

In this section, we describe the basics of our algorithm. (Details about the re-
quirements for the implementation of some features will be presented in the
next section.) We start by explaining the design considerations which led to our
algorithm. Next, we define the fundamental concept of our algorithm: the ini-
tial graph. We then describe the algorithm’s fundamental operations. Finally,
we conclude the section by analyzing the algorithm as a whole. A step-by-step
example for the algorithm can be found in [5].

2.1 Design Considerations

Our design is driven by multiple fundamental considerations. Our first observa-
tion was that we wanted to handle left recursion in a most natural way, which
has driven us to a bottom-up approach such as LR. In addition, the need for sup-
porting general context-free grammars (and even extensions such as PMCFGs)
requires a generalized approach such as GLR. However, our main requirement,
i.e., allowing to add rules to the grammar at any time, disqualifies table-driven
algorithms such as GLR: recomputing the table is prohibitively expensive, and
doing so while the parsing is in progress is usually not possible at all. Therefore,
we had to restrict ourselves to information which can be produced dynamically.

2.2 The Initial Graph

To fulfill the above requirements, we designed a data structure we call the initial
graph. Given a context-free grammar G = (N,T, P, S), the corresponding initial
graph is a directed labeled multigraph on the set of symbols Γ = N ∪ T , where
N is the set of nonterminals and T the set of terminals (tokens) of G, defined
by the following criteria:

– The tokens T are sources of the graph.
– The graph has an edge from the symbol s ∈ Γ to the nonterminal n ∈
N if and only if P (the set of productions of G) contains a rule p: n →
n1 n2 . . . nk s . . . with ni ∈ N0 ∀i, where N0 ⊆ N is the set of all those
nonterminals from which ε can be derived. The edge is labeled by the pair
(p, k), i.e., the rule (production) p generating the edge and the number k of
ni set to ε.



– In the above, if there are multiple valid (p, k) pairs leading from s to n, we
define the edge as a multi-edge with one edge for each pair (p, k), labeled
with that pair (p, k).

This graph serves as the replacement for precompiled tables and can easily be
updated as new rules are added to the grammar.

We additionally define neighborhoods on the initial graph: Let s ∈ Γ = N ∪T
be a symbol and z ∈ N be a nonterminal (called the target). The neighborhood
N (s, z) is defined as the set of edges from s to a nonterminal n ∈ N such that
the target z is reachable (in a directed sense) from n in the initial graph. Those
neigborhoods can be computed relatively efficiently by a graph walk and can be
cached as long as the grammar does not change.

2.3 Operations

Given these concepts, we define four elementary operations:

– matchε(n), n ∈ N0: This operation derives n to ε. It works by top-down
recursive expansion, simply ignoring left recursion. This is possible because
left-recursive rules which can produce ε necessarily produce infinitely many
syntax trees, and we decided to require exhaustive parsing only for a finite
number of alternatives.

– shift : This operation simply reads in the next token, just as in the LR algo-
rithm.

– reduce(s, z), s ∈ Γ, z ∈ N : This operation reduces the symbol s to the target
nonterminal z. It is based on and named after the LR reduce operation,
however it operates differently: Whereas LR only reduces a fully matched
rule, our algorithm already reduces after the first symbol. This implies that
our reduce operation must complete the match. It does this using the next
operation:

– match(s), s ∈ Γ = N ∪ T : This operation is the main operation of the
algorithm. It matches the symbol s against the input, using the following
algorithm:
1. If s ∈ N0, try ε-matches first: mε := matchε(s). Now we only need to

look for nonempty matches.
2. Start by shifting a token: t := shift .
3. If s ∈ T , we just need to compare s with t. If they match, we return a

leaf as our parse tree, otherwise we return no matches at all.
4. Otherwise (i.e., if s ∈ N), we return mε ∪ reduce(t, s).

Given the above operations, the algorithm for reduce(s, z) can be summarized
as follows:

1. Pick a rule c→ n1 n2 . . . nk s α1 α2 . . . α` in the neighborhood N (s, z).
2. For each ni ∈ N0: Tni

:= matchε(ni).
3. s was already recognized, let Ts be its syntax tree.
4. For each αj ∈ Γ = N ∪ T : Tαj

:= match(αj). Note that this is a top-down
step, but that the match operation will again do a bottom-up shift-reduce
step.



5. The resulting syntax tree is: c

Tn1 . . . Ts Tα1 . . .
6. If c 6= z, continue reducing recursively (reduce(c, z)) until the target z is

reached. We also need to consider reduce(z, z) to support left recursion; this
is the only place in our algorithm where we need to accomodate specifically
for left recursion.

If we have a conflict between multiple possible reduce operations, we need to
consider all the possibilities. We then unify our matched parse trees into DAGs
wherever possible to both reduce storage requirements and prevent duplicating
work in the recursive reduce steps. This is described in more detail in the next
section.

Our algorithm is initialized by calling match(S) on the start symbol S of
the grammar. The rest conceptually happens recursively. The exact practical
sequence of events, which allows for predictive parsing, is described in the next
section.

2.4 Analysis

The above algorithm combines enough bottom-up techniques to avoid trouble
with left recursion with sufficient top-down operation to avoid the need for tables
while keeping efficiency. The initial graph ensures that the bottom-up steps never
try to reduce unreachable rules, which is the main inefficiency in existing tableless
bottom-up algorithms such as CYK.

One disadvantage of our algorithm is that it produces more conflicts than
LR or GLR, for two reasons: Not only are we not able to make use of any
lookahead tokens, unlike common LR implementations, which are LR(1) rather
than LR(0), but we also already have to reduce after the first symbol, whereas LR
only needs to make this decision at the end of the rule. However, this drawback
is more than compensated by the fact that we need no states nor tables, only
the initial graph which can be dynamically updated, which allows dynamic rule
changes. In addition, conflicts are not fatal because our algorithm is exhaustive
(like GLR), and we are designing our implementation to keep its efficiency even
in the presence of conflicts; in particular, we never execute the same match step
at the same text position more than once.

3 Implementation Considerations

This section documents some tweaks we are making to the above basic algorithm
to improve efficiency and provide additional desired features. We describe the
modifications required to support predictive parsing, efficient exhaustive parsing,
peculiarities of natural language and next token constraints. Next, we briefly
introduce our flexible approach to lexing. Finally, we give a short overview on
interoperability with the Grammatical Framework (GF).



3.1 Predictive Parsing

The most intuitive approach to implement the above algorithm would be to use
straight recursion with implicit parse stacks and backtracking. However, that
approach does not allow incremental operation, and it does not allow discarding
short matches (i.e., prefixes of the input which already match the start symbol)
until the very end. Therefore, the backtracking must be replaced by explicit parse
stacks, with token shift operations driving the parse process: Each time a token
has to be shifted, the current stack is saved and processing stops there. Once
the token is actually shifted, all the pending stacks are processed, with the shift
executed. If there is no valid match, the parse stack is discarded, otherwise it is
updated. We also have to remember complete matches (where the entire starting
symbol S was matched) and return them if the end of input was reached, or
otherwise discard them when the next token is shifted. This method allows for
incremental processing of input and easy pinpointing of error locations. It also
allows changing the grammar rules for a specific range of text only.

The possible options for the next token and the nonterminal generating it can
be predicted. This can be implemented in a straightforward way by inspecting
the parse stacks for the next pending match, which yields the next highest-level
symbol, and if that symbol is a nonterminal, performing a top-down expansion
(ignoring left recursion) on that symbol to obtain the possible initial tokens for
that symbol, along with the nonterminal directly producing them. Once a token
is selected, parsing can be continued directly from where it was left off using the
incremental parsing technique described in the previous paragraph.

3.2 Efficient Exhaustive Parsing

In order to achieve efficiency in the presence of ambiguities, the parse stacks
must be organized in a DAG structure similar to the GLR algorithm’s graph-
structured stacks. [11, 12] In particular, a match operation can have multiple
parents, and the algorithm must produce a unified stack entry for identical match
operations at the same position, with all the parents grouped together. This
prevents having to repeat the match more than once. Only once the match is
completed, the stacks are separated again.

Parse trees must be represented as packed forests. Top-down sharing must be
explicit: Any node in a parse tree can have multiple alternative subtrees, allowing
to duplicate only the local areas where there are ambiguities and share the rest.
This representation must be created by explicit unification steps. This sharing
will also ensure that the subsequent reduce operations will be executed only once
on the shared parse DAG, not once per alternative. Bottom-up sharing, i.e., mul-
tiple alternatives having common subtrees, should be handled implicitly through
the use of reference-counted implicitly shared data structures, and through the
graph-structured stacks ensuring that the structures are parsed only once and
that the same structures are referenced everywhere.



3.3 Natural Language

Natural language, even the subset used for mathematics, poses some additional
challenges to our approach. There are two ways in which natural language is not
context free: attributes (which have to agree, e.g., for declination or conjugation)
and other context sensitivities best represented by PMCFGs [10].

Agreement issues are the most obvious context sensitivity in natural lan-
guages. However, they are easily addressed: One can allow each nonterminal to
have attributes (e.g., the grammatical number, i.e., singular or plural), which can
be inherent to the grammatical category (e.g., the number of a noun phrase) or
variable parameters (e.g., the number for a verb). Those attributes must agree,
which in practice means that each attribute must be inherent for exactly one
category and that the parameters inherit the value of the inherent attribute.
While this does not look context-free at first, it can be transformed to a CFG
(as long as the attribute sets are finite) by making a copy of a given nonterminal
for each value of each parameter and by making a copy of a given production for
each value of each inherent attribute used in the rule. This transformation can
be done automatically, e.g., the GF compiler does this for grammars written in
the GF programming language.

A less obvious, but more difficult problem is given by split categories, e.g.,
verb forms with an auxiliary and a participle, which grammatically belong to-
gether, but are separated in the text. The best solution in that case is to gen-
eralize the concept of CFGs to PMCFGs [10], which allow nonterminals to have
multiple dimensions. Rules in a PMCFG are described by functions which can
use the same argument more than once, in particular also multiple elements of
a multi-dimensional category. PMCFGs are more expressive than CFGs, which
implies that they cannot be transformed to CFGs. They can, however, be parsed
by context-free approximation with additional constraints. Our approach to han-
dling PMCFGs is based on this idea. However, we will not use the naive and
inefficient approach of first parsing the context-free approximation and then fil-
tering the result, but we will enforce the constraints directly during parsing,
leading to maximum efficiency and avoiding the need for subsequent filtering.
This can be achieved by keeping track of the constraints that apply, and im-
mediately expanding rules in a top-down fashion (during the match step) if a
constraint forces the application of a specific rule. The produced parse trees are
CFG parse trees which can be transformed to PMCFG syntax trees by a sub-
sequent unification algorithm, but the parsing algorithm will ensure that only
CFG parse trees which can be successfully unified are produced, saving time
both during parsing and during unification.

3.4 Next Token Constraints

Our approach also makes it possible to attach constraints on the token follow-
ing a rule, i.e., that said token must or must not match a given context-free
symbol, to that rule. We call such constraints next token constraints. This idea



can be used to implement scannerless parsing features, in particular, maximally-
matched character sequences, but also to restrict the words following e.g., “a”
or “an” in word-oriented grammars. This can be achieved by collecting the next
token constraints as rules are reduced or expanded and attaching them to the
parse stacks used for predictive parsing. Each time a token is shifted, before pro-
cessing the pending stacks, one needs to check whether the shifted token fulfills
the pending constraints and reject the stacks whose constraints aren’t satisfied.

3.5 Token Sources

Our application will require to interface the implementation with several different
types of token sources, e.g., a Flex lexer, a custom lexer, a buffer of pre-lexed
tokens, a dummy lexer returning each character individually etc. The token
source may or may not attach data to the tokens, e.g., a lexer will want to
attach the value of the integer to INTEGER tokens.

We also plan to allow the token source to return a whole parse tree instead
of the usual leaf node. That parse tree will be attached in place of the leaf. This
idea makes hierarchical parsing possible: Using this approach, the token source
will be able to run another instance of the parser or a different parser (e.g., a
formula parser) on a token and return the resulting parse tree.

3.6 Interoperability with GF

We plan to be able to import PGF [2] grammar files produced by the Gram-
matical Framework (GF) [8, 9], a binary format based on PMCFGs. This will
be achieved by converting them to PMCFG standard form, with a few required
extensions trivially supportable by our algorithm:

– Additional context-free rules can be given, the left-hand sides of which can
be used as “tokens” in the expression of PMCFG functions.

– Next token constraints can be used. This and the previous extension are
required to support GF’s rules for selecting e.g., “a” vs. “an”.

– PMCFG functions can be given a token (or a context-free nonterminal as
above) as a parameter, in which case the syntax tree will reproduce the parse
tree of that symbol verbatim, including attached data, if any. This extension
is required to support GF’s builtin String, Int and Float types.

A GF-compatible lexer will also be required.

4 Related Work

No current parser generator combines the partially conflicting requirements men-
tioned in the introduction.

Ambiguous grammars are usually handled using Generalized LR (GLR)
[11, 12], needing the compilation of a GLR table, which can take several sec-
onds or even minutes for large grammars. Such tables can grow extremely large



for natural-language grammars. In addition, GLR as formulated only works for
context-free grammars, our approach also supports PMCFGs (but it may be
possible to extend GLR to PMCFGs using our techniques). Costagliola et al. [3]
present a predictive parser XpLR for visual languages. However, in both cases,
since the tables used are mostly opaque, they have to be recomputed completely
each time the grammar changes.

The well-known CYK algorithm needs no tables, but handles only CFGs
and is very inefficient. Hinze & Paterson [4] propose a more efficient tableless
parser; their idea hasn’t been followed up by others.

The most serious competitor to our method is Krasimir Angelov’s PMCFG
parser [1] as found in the code of the Grammatical Framework (GF) [8, 9],
which has some support for natural language and predictive parsing. Compared
to Angelov’s parser, our approach promises similar features while being radically
different, and we hope it will prove better in the long run. In addition, our
algorithm is designed to easily support features such as incremental addition of
PMCFG rules which are essential for our application, which are not implemented
in Angelov’s current code and which may or may not be easy to add to it. Finally,
the planned support for importing the compiled PGF [2] files from GF will allow
our parser to reuse the rest of the framework.

5 Conclusion

We introduced DynGenPar, a dynamic generalized parser under development for
common mathematical language, presented its requirements, the basics of the
algorithm and the tweaks required for an efficient implementation, and compared
our approach with the state of the art, evidencing the huge advancements to be
made.

But DynGenPar is still in an early stage of development and planning, and
we are envisioning even more features, which will bring us further towards our
goal of computerizing a library of mathematical knowledge:

– context-sensitive constraints on rules: In this paper, we only discussed some
very specific types of context-sensitive constraints, i.e., PMCFG constraints
and next token constraints. We would like to support more general types of
constraints, and our algorithm is designed to accomodate that. The main
research objective here will be to figure out the class of constraints that is
actually needed.

– custom parse actions: The algorithm as written in this paper generates only
a plain parse tree and cannot execute any other actions according to the
grammar rules. In order to efficiently support things such as mathematical
definitions, we would like to be able to automatically trigger the addition of a
new grammar rule (which can be done very efficiently by updating the initial
graph) by the encountering of the definition. This should not require major
changes to the algorithm, but the implementation will have to accomodate
it.



– a runtime parser for rules: We are working on ways to read rules into the
parser from a user-writable format at runtime, rather than from precompiled
formats such as machine code or PGF grammars. This will require a user-
friendly mechanism for specifying the rules and an easy way to convert them
to our internal representation.

– error correction: The methods in this paper can be used only for basic error
detection and reporting: A parse error happens when a shifted token is invalid
for all pending parse stacks. We would like to design intelligent ways to
actually correct the errors, or suggest corrections to the user. This is a long-
term research goal.

Our hope is that the above features will make it easy to parse enough math-
ematical text to build a large database of mathematical knowledge, as well as
adapting to a huge variety of applications in mathematics and beyond.
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