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Problem Statement

What is Parsing?
I automatic input of text into a form understandable to a

computer
I Input: text (sequence of characters from an alphabet)
I Output: syntax tree (tree representation of the text

structure)
I often in 2 steps:

I lexing (scanning):
I Input: text
I Output: sequence of tokens

I parsing (in a strict sense):
I Input: sequence of tokens
I Output: syntax tree

I scannerless parsing: tokens = characters
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Problem Statement

Grammars
I fundamental information for parsing
I describe matching between text and syntax tree
I grammar = set of rules

I variables in rules: categories
I rule: how to generate text from a category

I start from start category
I parsing: reversed reading

I most frequent case: context-free grammars
I rules of the form Cat→ α β γ . . .

I where α, β, γ, . . . categories or tokens
I e.g., S→ A b, A→ A a, A→ a

(produces ab, aab, aaab, etc.)
I formal definition in the next section
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Problem Statement

Types of Mathematical Text

I natural language text:
The cost is the sum of the area of the square and half of
its perimeter. Minimize the cost.

I formulas: min x2 + 2x
I programming language style: min(x^2+2*x)
I LATEX style: $\min x^2+2x$

I mixed: Minimize x2 + 2x.
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Goals

Primary Target: FMathL (Formal Mathematical Language)

A modeling language is an artificial language for the user
friendly specification of mathematical problems, with
interfaces to the corresponding solvers.
FMathL is intended to be a modeling and documentation
language for the working mathematician that

I is based on traditional mathematical syntax,
I allows to express arbitrary mathematics,
I decides automatically which tools to use.

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Goals

FMathL Goals
I modeling language for optimization problems (short term)
I build computer-oriented library of math. knowledge

I formalized for the computer
I from input as informal as possible

I textbooks and papers (e.g., arXiv papers)
I reasoning

I checking the correctness of proofs
I solving computational (e.g., optimization) problems
I semantic classification and retrieval

I search engine for mathematics
I (mostly) automatic translation of mathematical texts
I vision: MathResS –

automatic mathematical research system
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Goals

Requirements
I allow efficient incremental addition of new rules

I without recompiling the whole grammar
I e.g. for a mathematical definition

I more general grammars than LR(1) or LALR(1)
I natural language is usually not LR(1)
I parallel multiple context-free grammars (PMCFGs)

I exhaustively produce all possible parse trees
I packed representation

I predictive parsing
I incremental processing
I predicting the next token

I both scanner-driven (natural math. language)
and scannerless (most other parsing tasks)
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Goals

Dynamic Generalized Parser
I dynamic

I grammar not fixed in advance
I allows adding rules at any time

I even during parsing (mathematical definitions)
I avoids precompiled tables

I generalized
I general context-free grammars
I produces all parse trees for ambiguous grammars
I additional generalization: PMCFGs (Seki et al.)

I Parallel Multiple Context-Free Grammars
I interoperability with GF (Grammatical Framework)

I simplicity is important
I formal verifiability (in the future)
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Goals

Problems with Existing Approaches
I top-down parsing

I chokes on left recursion
I e.g. Expr→ Expr + Term | Term
I requires grammar transformation or complex

workarounds
I fails simplicity criterion

I bottom-up parsing
I problem: what operation (shift, reduce) to do when
I requires parse states and stacks, lookahead
I requires precomputed tables

I have to recompute the whole table when the grammar
changes
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The DynGenPar Algorithm

Definition: Context-free Grammar (CFG)

I G = (N ,T ,P, S)
I N . . . (finite) set of nonterminals (categories)
I T . . . (finite) set of tokens

I called alphabet of the grammar
I disjoint from N

I P . . . (finite) set of productions (rules)
I of the form n→ α1 . . . αk , n ∈ N, αi ∈ N ∪ T ∀i

I S ∈ N . . . start symbol (start category)

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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The DynGenPar Algorithm

Initial Graph
I replaces precompiled tables

I dynamically extensible for new rules
I directed, labeled multigraph on Γ = N ∪ T
I tokens T are sources
I edge from symbol s ∈ Γ to category n ∈ N iff

I ∃ rule n→ n1 n2 . . . nk s . . . with ni ∈ N0 ∀i
I where N0 ⊆ N the set of all nonterminals from which ε

can be derived
I label of the edge

I that rule
I number k of ni set to ε

I more than one possible label . . . multi-edge
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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The DynGenPar Algorithm

Example Initial Graph (1/2)
I Example grammar

I N = {S, Task, Expr, Term, Factor}
I T = {min,max,+, ∗, x , NUMBER}
I S → Task Expr
I Task→ min | max
I Expr→ Expr + Term | Term
I Term→ Term ∗ Factor | Factor
I Factor→ x | NUMBER

I N0 = ∅
I because there is no rule n→ ε in the grammar
I thus consider only rules of the form n→ s . . .
I k (number of skipped ε categories) = 0

everywhere
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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The DynGenPar Algorithm

Example Initial Graph (2/2)
I we obtain the graph

I S

Task

S→Task Expr
<<

Expr

Expr→Expr+Term

��

Term
Expr→Term

ee
Term→Term∗Factor

��

Factor

Term→Factor

OO

min

Task→min

HH

max

Task→max

OO

+ ∗ x
Factor→x

OO

NUMBER

Factor→NUMBER
ff
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The DynGenPar Algorithm

Neighborhoods
I Let s ∈ Γ = N ∪ T (symbol), z ∈ N (target)
I Neighborhood N (s, z) . . .

I Edges from s to a category c where
I z reachable from c

I in the example
I N (min, S) = {Task→ min}
I N (x ,S) = ∅
I N (x , Expr) = {Factor→ x}
I N (Term, Expr) = {Expr→ Term, Term→ Term ∗ Factor}

I computed by graph walk
I can be cached

I but must be recomputed if the grammar
changes (at least locally)
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The DynGenPar Algorithm

Operations
I matchε(n), n ∈ N0 . . . derive ε from n

I top-down
I ignore recursion (would produce ∞ly many parse trees)

I shift . . . read in the next token
I reduce(s, z), s ∈ Γ, z ∈ N . . . reduce s to z

I different from LR reduce!
I already reduce after the first symbol
I reduce must complete the match

I match(s), s ∈ Γ = N ∪ T
I if s ∈ N0: matchε(s), remember result
I t = shift
I if s ∈ T : compare s with t
I if s ∈ N: reduce(t, s)
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The DynGenPar Algorithm

Reduce(s,z) Step
I pick a rule c → n1 n2 . . . nk s α1 α2 . . . α` in N (s, z)
I for each ni ∈ N0:

I matchε(ni)
I s already recognized . . . parse tree S
I for each αj ∈ Γ = N ∪ T :

I match(αj) (top-down step)
I parse tree: c

matchε(n1) . . . S match(α1) . . .
I if c 6= z : continue reducing recursively

I reduce(c, z)
I (also consider reduce(z , z) for left recursion)

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Analysis

Analysis

I more conflicts as for LR/GLR
I reduce already after the 1st symbol
I no lookahead

I but need neither states nor tables
I initial graph can be dynamically added to

I implementation keeps efficiency even in case of conflicts
I never execute the same match step more than once

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Additional Features

Additional Features (1/2)
I predictive parsing

I incremental operation driven by shift steps
I keep explicit parse stacks
I can predict next token from stacks

I top-down expansion
I efficient storage reduces effort

I DAG-structured stacks
I ⇒ match steps executed only once

I syntax trees as DAGs (packed forests)
I less storage and storing effort
I avoids some case distinctions

I allows efficient exhaustive parsing

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
Dynamic Generalized Parsing and Natural Mathematical Language – Defensio



Contents Acknowledgements Introduction DynGenPar Applications Results Outlook References

Additional Features

Additional Features (2/2)
I constraints enforced during parsing

I parallel multiple context-free grammars (PMCFGs,
Seki et al.)

I parsed as constrained CFGs
I next token constraints

I require (expect) / forbid (taboo) token(s) after a rule
I special case: scannerless parsing

(token = character), e.g. maximal matches
I CFG rules can have labels

I reproduced in the parse tree
I custom parse actions

I algorithm as presented generates only parse tree
I want e.g., action for definition producing rule

Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Additional Features

Interoperability Features
I arbitrary token source (lexer, token buffer, . . . )

I other DynGenPar instance (hierarchical parsing)
I or other arbitrary parser

I can also return whole parse tree
I Flex lexer (C++)
I character token source (scannerless parsing)

I import of PGF files from Grammatical Framework (GF)
I see Applications section

I Java bindings
I built using Qt Jambi generator
I used in the Concise GUI (see next slide)
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DynGenPar and Concise

Concise

I graphical user interface (GUI)
I integrated development environment (IDE) for FMathL
I implements and visualizes a semantic memory

I graph-structured knowledge representation
I interactive graph editor
I written in Java
I DynGenPar integrated into Concise

I through the Java bindings
I used for almost all parsing tasks in Concise
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DynGenPar and Concise

Screenshot of Concise (Graph View)
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DynGenPar and Concise

Embedding of DynGenPar into Concise
I type sheet: text file representing a type system

I specification of types
I required fields
I optional fields

I usages encoding grammar information
I Concise Grammar Java class

I converts Concise type sheet to DynGenPar grammar
I converts DynGenPar parse tree to Concise record

I record: subgraph in the semantic memory
I supported token sources:

I scannerless TextByteTokenSource
I ConciseTokenSource producing tokens from a record

I used to convert list-of-words record to
semantic record
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Applications of DynGenPar to Formal Languages

Concise Type Sheets
I representation of grammars in Concise
I themselves parsed using DynGenPar
I grammar is itself a type sheet

I originally by Arnold Neumaier
I bootstrap parser

I grammar manually converted to a C++ program
I uses DynGenPar directly (without Concise)
I produces Concise record as a text file

I can self host (passes bootstrap comparison)
I can parse type sheets using the bootstrapped type sheet

for type sheets
I produced output matches bootstrap parser
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Applications of DynGenPar to Formal Languages

Concise Code Sheets
I fundamental programming language in Concise
I textual representation of elementary acts

I primitive operations on the semantic memory
I 16 act types: Do, Return, Goto, Assign, Set, Get,

GetType, IsSubtypeOf, Identical, Convert, Vcopy,
ForAllFields, Call, Ask, Supervise, Resume

I more structured than assembly: loops, etc.
I code sheet representation adds declarations

I types, global and local variables, etc.
I DynGenPar produces references by name
I must be resolved when converting to

elementary acts
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Applications of DynGenPar to Formal Languages

Concise Record Transformation Sheets

I transform one record into another
I usually of a different type
I fixed source type and destination type
I can be the same type (simplifier)

I structured like XSLT style sheets
I adapted to the Concise semantic memory
I added support for name resolution
I used, e.g., for the conversion from code sheets to

elementary acts
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Applications of DynGenPar to Formal Languages

Chemical Process Modeling (ChemProcMod)
I idea, input from Ali Baharev and Arnold Neumaier

I optimization techniques for chemical process simulation
I attempted using Modelica

I unsatisfactory syntax
I issues with available implementations

I bugs, performance
I specialized modeling language (Concise type sheet)

I intuitive for a chemical engineer
I Ali Baharev has chemical engineering background

I declarative rather than imperative
I vocabulary from the chemical application

I not from the mathematical model or OOP
I e.g., Modelica class → ChemProcMod unit

I comes with basic unit library
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Applications of DynGenPar to Formal Languages

Extensible OptProbl Grammar
I context: COCONUT Project (Hermann Schichl et al.)

I framework for global optimization
I need for extensible input format

I e.g., adding Lie group notation
I PoC grammar for optimization problems

I coded directly in C++ using DynGenPar (no Concise)
I small subset of LATEX

I only programming language notation (e.g., 2 ∗ x)
I e.g., no implied multiplication (e.g., 2x)

I extensible with \newcommand
I adds rules to the grammar at runtime

I also features next token constraints
I used to determine the end of a tag
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Applications of DynGenPar to Formal Languages

Robust AMPL
I AMPL: A Mathematical Programming Language

I well-known modeling language for optimization problems
I subset reimplemented as Concise type sheet

I official AMPL software not needed
I robust: added full support for intervals

I official AMPL: intervals allowed only as sets
I robust AMPL: intervals allowed wherever numbers are

I record transformation to internal representation
I to RobustOptProb type sheet (Ferenc Domes)
I record transformation can be rigorous (all numbers

become intervals with outward rounding) or not
(output numbers are of double type)
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DynGenPar and the Grammatical Framework (GF)

PGF (Portable Grammar Format) File Import
I GF = Grammatical Framework (Ranta et al.)
I PGF (Angelov et al.): format produced by GF

I based on parallel multiple context-free grammars
(PMCFGs, Seki et al.)

I binary serialization of Haskell data structures
I import implemented in DynGenPar

I Haskell-compatible deserialization
I conversion to standard PMCFG format

I some needed extensions (context-free categories as
tokens, next token constraints, tokens with values)
supported by DynGenPar

I parsing requires GF-compatible lexer
I implemented as PgfTokenSource
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DynGenPar and the Grammatical Framework (GF)

PGF GUI – Graphical Demo Application
demonstrates DynGenPar PGF import and prediction
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DynGenPar and the Grammatical Framework (GF)

GF Application Grammar for Mathematical Language
I joint work with Peter Schodl
I early research on grammars for natural mathematical

language in the FMathL project
I focus on linearization (the opposite of parsing)

I using GF Haskell runtime (no DynGenPar)
I only for text, formulas as verbatim strings
I 2 versions

1. handwritten GF grammar
I in lockstep with the Concise type system

2. automatically generated GF grammar
I generated from the Concise type system

I abandoned in favor of Concise type sheets
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Applications of DynGenPar to Natural Language

Naproche (Cramer et al.)

I controlled natural language for mathematical logic
I grammar described in Kühlwein’s diploma thesis
I implemented by me

1. in Bison, using Generalized LR (GLR)
2. in DynGenPar (in C++), for comparison

I hierarchical grammar
I formulas parsed by separate grammar

I all 4 grammars use a Flex lexer
I Bison: Flex C mode
I DynGenPar: Flex C++ mode (C++ classes)
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Applications of DynGenPar to Natural Language

TextDocument Toolchain
I imports LATEX document as Concise record

I in the TextDocument type system

1. LaTeXML (3rd party): converts LATEX to XML
2. processxml: transforms LaTeXML XML to record XML
3. xmltocnr: converts record XML to Concise record sheet
I central tool: processxml

I transforms LATEX structure to TextDocument structure
I resulting TextDocument records are unparsed

I only document structure represented
I paragraph = list of words
I can be parsed in a later step
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Applications of DynGenPar to Natural Language

BasicDefinitions
I Concise type sheet operating on paragraphs

I unparsed TextDocument representation (list of words)
I uses the ConciseTokenSource

I by Arnold Neumaier, Ferenc Domes, Kevin Kofler
I PoC for the handling of mathematical definitions
I main feature: definitions automatically trigger a hook

that dynamically adds a rule at runtime
I static part covers just enough idiomatic mathematical

English to represent basic mathematical definitions
I formulas kept as unparsed strings

I can be parsed with separate formula grammar
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Applications of DynGenPar to Natural Language

BasicReasoning

I Concise type sheet operating on paragraphs
I by Arnold Neumaier and Kevin Kofler
I based on MathNat by Muhammad Humayoun
I idiomatic mathematical English needed to represent basic

mathematical reasoning
I significantly broader scope than BasicDefinitions

I work in progress
I grammar not yet complete
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Applications of DynGenPar to Natural Language

LATEX Formulas

I Concise type sheet (by me) operating on strings
I grammar for LATEX formulas in typical notation

I e.g., implied multiplication allowed
I by design, not all ambiguities resolved during parsing

I some resolvable by semantic analysis (planned)
I remaining ones must be resolved interactively

I scannerless grammar (character tokens)
I based on the expression grammar pattern
I tested on 2 university text books in German

I > 70% success rate (see Results section)
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Efficiency Results

Competitive with Bison

I benchmarking results on the Naproche grammar
compilation grammar conversion parsing (Burali-Forti)

Bison 1089 ms 153 ms* 1.60 ms
DynGenPar 8851 ms 5.34 ms 9.37 ms**

* . . . at compile time, thus requires recompilation
** . . . total execution time of 14.71 ms minus grammar conversion time

I only 6 times slower than Bison at pure parsing
I i.e. exactly what Bison is optimized for

I 29 times faster than Bison at grammar conversion
I no recompilation required
I ⇒ effectively over 200 times faster!
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Efficiency Results

Competitive with GF (Grammatical Framework)
I benchmarking results on the GF Phrasebook grammar

I testcase:
See you in the best Italian restaurant tomorrow!

parsing time
GF Haskell runtime 43.4 ms
GF C runtime 17.8 ms
DynGenPar 121.8 ms

I parsing time comparable to both GF runtimes
I on practical application grammars

I DynGenPar honors next token constraints
I both GF runtimes incorrectly accepted

Where is an restaurant?
Mag. Kevin Kofler, Bakk. University of Vienna, Faculty of Mathematics
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Efficiency Results

Performance of Dynamic Rule Addition

I test results on BasicDefinitions grammar
I paragraphs containing 1 definition each

number of definitions parsing time
0 7 ms
1 9 ms
10 31 ms
100 228 ms
1000 2298 ms

I time to parse a paragraph and add a rule to the grammar:
only 2.3 ms altogether
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Test Results on Real-World LATEX Formulas

LATEX Formula Parser Success Rates
I unique formulas from 2 university textbooks

I ALA (Arnold Neumaier: Analysis und lineare Algebra)
I Einf (Hermann Schichl and Roland Steinbauer:

Einführung in das mathematische Arbeiten)
I multiple instances of the exact same formula deleted

ALA
unambiguous

42.4%
ambiguous
28.6% failed

29.0%

Einf
unambiguous

52.0%

ambiguous
19.8%

failed
28.2%
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Future Extensions

Possible Future Extensions
I context-sensitive constraints on rules

I generalize PMCFG and next token constraint support
I main objective: figure out the needed class of constraints

I stateful parse actions (more state information)
I runtime parser for rules (directly in DynGenPar)

I read rules into parser from user-writable format
I allows dynamic extension by the user at runtime
I now only possible through Concise

I scalability to larger PMCFGs
I generalize optimizations that assume no constraints

I error correction (long-term research goal)
I have only basic error detection and reporting
I goal: suggest corrections to the user
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