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Abstract

This thesis introduces the dynamic generalized parser DynGenPar and its applications.
The parser is aimed primarily at natural mathematical language. It was also successfully
used for several formal languages. DynGenPar is available at https://www.tigen.org/
kevin.kofler/fmathl/dyngenpar/.
The thesis presents the algorithmic ideas behind DynGenPar, gives a short overview of the
implementation, documents the applications the parser is currently used for, and presents
some efficiency results. Parts of this thesis, mainly in Chapter 2, are based on the refereed
conference paper Kofler & Neumaier [56].
The DynGenPar algorithm combines the efficiency of Generalized LR (GLR) parsing, the
dynamic extensibility of tableless approaches, and the expressiveness of extended context-
free grammars such as parallel multiple context-free grammars (PMCFGs). In particular,
it supports efficient dynamic rule additions to the grammar at any moment. The algorithm
is designed in a fully incremental way, allowing to resume parsing with additional tokens
without restarting the parse process, and can predict possible next tokens. Additionally,
it handles constraints on the token following a rule. These allow for grammatically correct
English indefinite articles when working with word tokens. They can also represent typical
operations for scannerless parsing such as maximal matches when working with character
tokens.
Several successful applications of DynGenPar are documented in this thesis. DynGen-
Par is a core component of the Concise project, a framework for manipulating semantic
information both graphically and programmatically, developed at the University of Vi-
enna. DynGenPar is used to parse the formal languages defined by Concise, specifying
type systems, programs, and record transformations from one type system to another.
Other formal languages with a DynGenPar grammar are a modeling language for chemi-
cal processes, a proof-of-concept grammar for optimization problems using dynamic rule
additions, and a subset of the AMPL modeling language for optimization problems, ex-
tended to also allow intervals wherever AMPL expects a number. DynGenPar can import
compiled grammars from the Grammatical Framework (GF) and parse text using them.
A DynGenPar grammar also exists for the controlled natural mathematical language
Naproche. The use of dynamic rule additions to support mathematical definitions was
implemented in a grammar as a proof of concept. There is work in progress on a grammar
for the controlled natural mathematical language MathNat. Finally, there is also a well-
working DynGenPar grammar for LATEX formulas from two university-level mathematics
textbooks. The long-term goal is to computerize a large library of existing mathematical
knowledge using DynGenPar.
Keywords: dynamic generalized parser, dynamic parser, tableless parser, scannerless
parser, parser, parallel multiple context-free grammars, common mathematical language,
natural mathematical language, controlled natural language, mathematical knowledge
management, formalized mathematics, digital mathematical library
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Zusammenfassung

Diese Dissertation stellt den dynamischen verallgemeinerten Parser DynGenPar und seine
Anwendungen vor. Der Parser zielt hauptsächlich auf natürliche mathematische Sprache
ab. Er wurde auch erfolgreich für mehrere formale Sprachen verwendet. DynGenPar ist
auf https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/ verfügbar.
Die Dissertation präsentiert die algorithmischen Ideen hinter DynGenPar, gibt eine kurze
Übersicht über die Implementierung, dokumentiert die Applikationen, für die der Parser
derzeit verwendet wird, und präsentiert einige Effizienzergebnisse. Teile dieser Disserta-
tion, vor allem in Kapitel 2, basieren auf dem referierten Konferenzartikel Kofler &
Neumaier [56].
Der DynGenPar-Algorithmus kombiniert die Effizienz verallgemeinerten LR-Parsens
(GLR), die dynamische Erweiterbarkeit tabellenloser Ansätze, sowie die Ausdrucksstärke
erweiteter kontextfreier Grammatiken wie paralleler mehrfacher kontextfreier
Grammatiken (PMCFG). Insbesondere unterstützt er das effiziente Hinzufügen von
Regeln zur Grammatik zu jedem Zeitpunkt. Der Algorithmus ist komplett inkrementell
konzipiert, erlaubt also, einen unterbrochenen Parsingvorgang mit zusätzlichen Tokens
fortzusetzen, ohne den Parsingvorgang neu zu starten, und kann mögliche nächste
Tokens vorhersagen. Zusätzlich behandelt er vorgegebene Einschränkungen (constraints)
für den auf eine Regel folgenden Token. Diese erlauben grammatikalisch korrekte
englische indefinite Artikel, wenn mit Wörtern als Tokens gearbeitet wird. Sie können
auch typische Operationen für scannerloses Parsen wie etwa das Finden einer
Übereinstimmung maximaler Länge (maximales Matchen) darstellen, wenn mit Zeichen
als Tokens gearbeitet wird.
Mehrere erfolgreiche Anwendungen von DynGenPar sind in dieser Dissertation doku-
mentiert. DynGenPar ist eine Kernkomponente des Concise-Projekts, eines Frameworks
zum Manipulieren semantischer Information sowohl in graphischer als auch in program-
matischer Form, entwickelt an der Universität Wien. DynGenPar wird verwendet, um
die von Concise definierten formalen Sprachen zu parsen, die Typsysteme, Programme,
sowie Recordumwandlungen von einem Typsystem in ein anderes spezifizieren. Ande-
re formale Sprachen mit einer DynGenPar-Grammatik sind eine Modellierungssprache
für chemische Prozesse, eine als Machbarkeitsbeweis dienende, dynamisches Hinzufügen
von Regeln verwendende Grammatik für Optimierungsprobleme, sowie eine Teilmenge
der Modellierungssprache für Optimierungsprobleme AMPL, erweitert, um auch Inter-
valle zu erlauben, wo immer AMPL eine Zahl erwartet. DynGenPar kann kompilierte
Grammatiken des Grammatical Framework (GF) importieren und Text mit ihnen parsen.
Eine DynGenPar-Grammatik existiert auch für die kontrollierte natürliche mathematische
Sprache Naproche. Die Benutzung dynamischem Hinzufügens von Regeln, um mathema-
tische Definitionen zu unterstützen, wurde in einer Grammatik als Machbarkeitsbeweis
implementiert. Eine Grammatik für die kontrollierte natürliche mathematische Sprache
MathNat ist in Arbeit. Schließlich gibt es auch eine gut funktionierende DynGenPar-
Grammatik für LATEX-Formeln aus zwei Mathematik-Textbüchern auf Universitätsniveau.
Das langfristige Ziel ist, eine große Bibliothek bestehenden mathematischen Wissens mit-
tels DynGenPar zu computerisieren.

https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/
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Chapter 1

Introduction

Parsing is the act of transforming some properly structured input text (input sen-
tence) into a form understandable by a computer. Usually, this is a tree representation
called a parse tree. A parser is a program that parses any given properly structured
input text using a set of rules called a grammar.
The most commonly used type of grammar is the context-free grammar (Chomsky
[12, 13]). Computer scientists (e.g., Aho & Ullman [1]) define a context-free grammar
as a tuple G = (N, T, P, S) (traditionally given in that order), where

• T is the alphabet, a set of symbols called tokens. In order to be parsable, the
input text must consist exclusively of symbols from the alphabet T .

• N is a set of nonterminals (also called categories), disjoint from T .
• P is a set of productions (rules) of the form n→ α1 α2 . . . αk, where n ∈ N and
αi ∈ N ∪ T for all i. Those rules define which input sentences can be parsed and
how the resulting parse trees look like.

• S ∈ N is the start symbol (also called start category).
The produced parse tree consists of the steps to go from the start symbol S to the input
text, where each step replaces the left hand side of a production from P with its right
hand side.
The popularity of context-free grammars is due to the efficiency of parsing text with
them. More general types of grammars exist (Chomsky [12]) but require exponential
time or even infinite time to parse with. Therefore, where context-free grammars are not
powerful enough, the common way to extend them is to add additional context-sensitive
constraints to some or all productions. Those constraints determine whether or not a
rule can be applied in a particular context. They can be verified during or after parsing.
In this way one obtains a more powerful grammar formalism while retaining the efficiency
of context-free grammars.
This thesis presents DynGenPar (Dynamic Generalized Parser), a parser aimed
primarily at natural mathematical language, and its applications. The applications that
are presented are grammars for several formal languages and some grammars related to
natural mathematical language.

13



14 CHAPTER 1. INTRODUCTION

DynGenPar combines
• the efficiency of table-driven parsing algorithms such as LR (Knuth [45]) or Gen-

eralized LR (GLR) (Tomita [91], Tomita & Ng [92]),

• the dynamic extensibility of tableless parsing algorithms, and

• the expressiveness of context-free grammars extended with context-sensitive con-
straints.

In this chapter, first, the goals of the research underlying this thesis are presented. Then,
an overview of state-of-the-art related work is given. Finally, the contents of the remaining
chapters of this thesis are summarized.

1.1 Goals

I have developed DynGenPar with a very ambitious primary target application in mind:
the FMathL (Formal Mathematical Language) project (Neumaier [70]). FMathL
is the working title for a modeling and documentation language for mathematics, suited to
the habits of mathematicians, to be developed at the University of Vienna. The project
complements efforts for formalizing mathematics from the computer science and auto-
mated theorem proving perspective. In the long run, the FMathL system might turn
into a user-friendly automatic mathematical assistant for retrieving, editing, and check-
ing mathematics (but also computer science and theoretical physics) in both informal,
partially formalized, and completely formalized mathematical form.
Unfortunately, due to limited funding and time, only small parts of FMathL have been
realized so far. One of them is Concise (Schodl et al. [87], Domes [22]), a framework
and GUI (graphical user interface) for viewing and manipulating, both graphically and
programmatically, semantic information in graph form. Concise has been developed pri-
marily by Ferenc Domes. Some parts have been added or improved by me. Concise is
discussed in more detail in Section 3. The second major output of the FMathL project
to have been completed is my parser DynGenPar. Based on Concise and DynGenPar,
grammars for several formal languages and subsets of natural mathematical language were
developed. DynGenPar and the grammars developed for it are the subject of this thesis.
Many of the design requirements for DynGenPar were studied with the long-term goals
of the FMathL project in mind. In particular, the aim is to be able to parse a controlled
language that is as close as possible to commonly-used natural mathematical language.
That long-term plan means that the current applications make only limited use of the
parser’s characterizing features. However, one can expect DynGenPar to be very useful for
many projects that either have similar goals as FMathL, or just happen to have similar
requirements. In particular, the following requirements (Kofler & Neumaier [56])
were imposed as a result of the FMathL project planning: The parser should:

• allow the efficient incremental addition of new rules to the grammar (e.g., when a
definition is encountered in a mathematical text) at any time, without recompiling
the whole grammar;
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• be able to parse more general grammars than just LR(1) (Knuth [45]) or LALR(1)
(DeRemer [20]) ones: Natural language is usually not LR(1). In addition, being
able to parse so-called parallel multiple context-free grammars (PMCFGs)
(Seki et al. [88]) is a necessity for reusing the natural language processing facilities
of the Grammatical Framework (GF) (Ranta [77, 78], Ranta et al. [79]);

• exhaustively produce all possible parse trees (in a packed representation), in order
to allow later semantic analysis to select the correct alternative from an ambiguous
parse, at least as long as their number is finite;

• support processing text incrementally, i.e., resuming parsing with additional to-
kens without restarting the parse process, and predicting the next token (predictive
parsing);

• be transparent enough to allow formal verification and implementation of error
correction in the future;

• support both scanner-driven (for common mathematical language) and scannerless
(for some other parsing tasks in the implementation) operation.

These requirements, especially the first one, rule out all efficient parsers currently in use.
I solved these challenges with an algorithm loosely modeled on Generalized LR (GLR)
(Tomita [91], Tomita & Ng [92]), but with an important difference: To decide when
to shift a new token and which rule to reduce when, GLR uses complex LR states. In
practice, these are mostly opaque entities, which have to be recomputed completely each
time the grammar changes and which can grow very large for natural-language grammars.
In contrast, my algorithm uses a so-called initial graph, which is easy and efficient to
update incrementally as new rules are added to the grammar, along with runtime top-
down information. (Kofler & Neumaier [56]) The details will be presented in the next
section.
This approach allows my algorithm to be both dynamic:

• The grammar is not fixed in advance.
• Rules can be added at any moment, even during the parsing process.
• No tables are required. The graph I use instead can be updated very efficiently as

rules are added.
and generalized:

• The algorithm can parse general PMCFGs.
• For ambiguous grammars, all possible syntax trees are produced.

(Kofler & Neumaier [56])
Additionally, the algorithm handles constraints on the token following a rule. This has
several applications in practice. For instance, when working with word tokens, this allows
for grammatically correct English indefinite articles, e.g., a set, but an operator. When
working with character tokens, it can represent typical operations for scannerless parsing
such as maximal matches, e.g., when we are trying to match an integer, if 1234 matches,
do not accept just 123.
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Constraints, both those required to parse general PMCFGs and the next token constraints
described above, are handled transparently during parsing. No separate post-processing
step is needed. Compared to the naive approach of first parsing exhaustively and then
validating the constraints, the selected one-step approach ensures maximum efficiency.
I expect this parsing algorithm to allow parsing a large subset of common mathematical
language and help building a large database of computerized mathematical knowledge.
Additionally, one can envision potential applications outside of mathematics, e.g., for
domain-specific languages for special applications (Mernik et al. [66]). These are cur-
rently mainly handled by scannerless parsing using GLR (Visser [95]) for context-free
grammars (CFGs), but would benefit a lot from my incremental approach. Therefore,
DynGenPar is an important achievement independently of whether FMathL will ulti-
mately succeed or not. (Kofler & Neumaier [56])
The new parser is available at https://www.tigen.org/kevin.kofler/fmathl/
dyngenpar/.

1.2 Related Work

This section is based in part on Kofler & Neumaier [56].
No current parser generator combines all partially conflicting requirements mentioned
above.
Ambiguous grammars are usually handled using Generalized LR (GLR) (Tomita
[91], Tomita & Ng [92]), needing the compilation of a GLR table, which can take
several seconds or even minutes for large grammars. Such tables can grow extremely
large for natural-language grammars. In addition, my parser also supports PMCFGs,
whereas GLR only works for context-free grammars (but it may be possible to extend
GLR to PMCFGs using my techniques). Costagliola et al. [16] present a predictive
parser XpLR (eXtended Positional LR) for visual languages. However, in both cases,
since the tables used are mostly opaque, they have to be recomputed completely each
time the grammar changes.
The well-known CYK (Cocke-Younger-Kasami) algorithm (Kasami [43], Younger
[101]) needs no tables, but is very inefficient and handles only CFGs. Hinze & Paterson
[36] propose a more efficient tableless parser; their idea has not been followed up by others.
The most serious competitor to my parser is Angelov’s PMCFG parser (Angelov [3])
as found in the code of the Grammatical Framework (GF) (Ranta [77, 78], Ranta
et al. [79]), which has some support for natural language and predictive parsing. Alanko
and Angelov have recently developed a C version in addition to the existing Haskell
implementation. Compared to Angelov’s parser, I offer similar features with a radically
different approach, which I hope will prove better in the long run. In addition, my
implementation already supports features such as incremental addition of PMCFG rules
which are essential for my application, which are not implemented in Angelov’s current
code and which may or may not be easy to add to it. My parser also supports importing
compiled PGF (Portable Grammar Format) (Angelov et al. [4]) files from GF, allowing

https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/
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to reuse the remainder of the Grammatical Framework. When doing so, as evidenced in
Section 7.1.2, it reaches a comparable performance. My implementation can also enforce
next token constraints, e.g., an restaurant is not allowed.
Another important feature of DynGenPar is the support for parsing both with and without
a separate lexer (scanner). This is also not a new idea. Scannerless parsing has been
originally developed by Salomon & Cormack [81] for programming languages. Visser
[95] extended the approach to GLR (Generalized LR), which makes it applicable to general
context-free grammars, even ambiguous ones. Additional strategies for disambiguation
are discussed in Van Den Brand et al. [93]. This allows the technique to be applied to
more flexible domain-specific languages. However, the use of the table-driven LR or GLR
algorithm limits these approaches to static languages. In contrast, with DynGenPar, the
domain-specific language can be dynamically extended at runtime.
Research on natural language input of mathematics has been driven primarily by the
proof assistant community. The formal languages of proof checkers are hard to read and
write. Therefore, several ways to make use of natural language to input proofs have
been attempted. Hallgren & Ranta [35] make use of GF to allow natural language
input in Hallgren’s proof editor Alfa (Hallgren [34]). Alfa can convert between its
supported controlled subset of natural language and formal language in both directions.
The limiting factor is the grammar of the controlled natural language. The authors note
that in Alfa, “natural-language input is only useful for small expressions, since entering a
long expression runs the risk of falling outside the grammar” (Hallgren & Ranta [35]).
They work around this issue by allowing interactive input of small expressions at a time.
That approach is driven one step further by theHLM Proof Assistant (Reichelt [80]),
which completely gives up on text as an input format. In HLM, proofs can only be input
interactively through menu entries. A natural language representation is used purely as a
visualization. Another research direction was taken by Koepke et al. [46], who designed
Naproche (Cramer et al. [17], Koepke et al. [46]), a text-based controlled natural
language for proof checkers. In Naproche, entire proofs can be written in text form. This
approach was the most interesting for my research team, and therefore, Naproche was one
of the first grammars I implemented in DynGenPar. The DynGenPar implementation of
Naproche will be presented in Section 6.1. However, Naproche is also a fairly small subset
of natural language. More recently, Humayoun [40] introduced the MathNat language
(Humayoun & Raffalli [41], Humayoun [39]), based on GF. MathNat is probably the
most powerful controlled natural language for proof checkers to date. Therefore, MathNat
was chosen as the starting point for the upcoming DynGenPar-based controlled natural
language grammar. The state of that grammar’s ongoing development will be discussed
in Section 6.4.
DynGenPar was not developed in isolation. The research documented in this thesis is
part of the FMathL (Formal Mathematical Language) umbrella project (Neumaier
[70]), a modeling and documentation language for mathematics, suited to the habits of
mathematicians, to be developed at the University of Vienna. DynGenPar is closely
related to and interoperates with Concise (Schodl et al. [87], Domes [22]), a framework
and GUI (graphical user interface) for viewing and manipulating, both graphically and
programmatically, semantic information in graph form. The PhD thesis Schodl [84]
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introduces the semantic memory and the type system underlying Concise. The output
produced by DynGenPar is stored in the Concise semantic memory and conforms to
the Concise type system. The technical report Schodl & Neumaier [85] documents
research done by its authors on the grammar of a university-level introductory textbook on
analysis and linear algebra (Neumaier [69]). The output from that research was a source
of inspiration for the natural language grammars presented in this thesis. The user manual
Domes et al. [25] documents the Concise GUI for potential users. The Concise package
includes DynGenPar, and the ways to access DynGenPar from the Concise user interface
are also documented in the Concise manual. The technical reports that I produced in the
context of FMathL, Concise, and DynGenPar are listed in Appendix C.

1.3 Contents

Chapter 2, based on the published conference paper Kofler & Neumaier [56], presents
the algorithm and implementation of DynGenPar. This parser is the main product of the
thesis, and the central piece on which almost all the research is based. The remaining
chapters document mainly applications based on DynGenPar grammars.
Chapter 3 introduces Concise (Schodl et al. [87], Domes [22]), a framework and GUI for
viewing and manipulating, both graphically and programmatically, semantic information
in graph form. The focus is on the interaction between DynGenPar and Concise and on
the features in Concise enabled by DynGenPar.
Chapter 4 describes some formal languages on which DynGenPar is currently used. These
applications constitute some successful practical uses of DynGenPar, although they make
only limited use of the parser’s unique features. The grammars that are featured are:

• Three formal languages used within Concise: type sheets, code sheets, and record
transformation sheets

• A language for chemical process modeling
• An extensible grammar for optimization problems demonstrating the dynamic gram-

mar extensibility of DynGenPar
• A grammar for a subset of the AMPL (Fourer et al. [27], AMPL Optimization

inc. [2]) modeling language for optimization problems, extended to allow intervals
wherever AMPL normally expects a number

Chapter 5 introduces the Grammatical Framework (GF) (Ranta [77, 78], Ranta et al.
[79]) for natural language processing and how DynGenPar interoperates with it. In par-
ticular, it discusses how DynGenPar can operate on compiled GF grammars in the PGF
(Portable Grammar Format) file format. A GUI application demonstrating the prediction
functionality of DynGenPar on PGF grammars and a proof of concept for a GF applica-
tion grammar for a tiny subset of natural mathematical language are also described.
Chapter 6 documents progress towards the research goal that has driven DynGenPar
development. It presents applications of DynGenPar to various controlled subsets of
natural language:
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• Naproche (Cramer et al. [17], Koepke et al. [46])
• A proof of concept for the use of dynamic rule additions to implement mathematical

definitions
• MathNat (Humayoun & Raffalli [41], Humayoun [40, 39])
• A subset of natural LATEX formula notation (without dedicated semantic markup)

Finally, Chapter 7 wraps up the thesis by presenting some practical results obtained with
DynGenPar, summarizing what was achieved through DynGenPar, and giving an outlook
on possible future extensions. In addition to several performance results, success rates
for the grammar for LATEX formulas on the formulas extracted without modification from
two university-level introductory mathematics textbooks (Neumaier [69], Schichl &
Steinbauer [83]) are shown.
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Chapter 2

The Dynamic Generalized Parser
DynGenPar

This chapter, based on the published conference paper Kofler & Neumaier [56],
presents the algorithm and implementation of DynGenPar, the Dynamic General-
ized Parser. This parser is the main product of the thesis, and the central piece on
which almost all the research is based. The remaining chapters of this thesis document
mainly applications based on DynGenPar grammars.
DynGenPar combines

• the efficiency of table-driven parsing algorithms such as LR (Knuth [45]) or Gen-
eralized LR (GLR) (Tomita [91], Tomita & Ng [92]),

• the dynamic extensibility of tableless parsing algorithms, and
• the expressiveness of context-free grammars extended with context-sensitive con-

straints.
This chapter documents how these goals have been achieved.
The first section of this chapter describes the theoretical DynGenPar algorithm. It ex-
plains the requirements that had to be considered in the design of the algorithm, pre-
cisely describes the algorithm with the help of an example, and gives a short analysis
of its efficiency properties. The second (and last) section gives an overview of the prac-
tical DynGenPar implementation. It documents the selected technologies, the licensing
choices, and the tweaks that were made to the implementation to enhance efficiency and
functionality.
The algorithm was first presented in the technical report Kofler & Neumaier [54], an
expanded version of which was later published as Kofler & Neumaier [56].

21
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2.1 The DynGenPar Algorithm

In this section, I describe the basics of my algorithm. (Details about the implementation
of some features will be presented in Section 2.2.3.) I start by explaining the design
considerations which led to my algorithm. Next, I define the fundamental concept of
my algorithm: the initial graph. I then describe the algorithm’s fundamental operations
and give an example of how they work. Finally, I conclude the section by analyzing the
algorithm as a whole.

2.1.1 Design Considerations

My design was driven by multiple fundamental considerations.
My first observation was that I wanted to handle left recursion in a most natural way,
which has driven me to a bottom-up approach such as LR (Knuth [45]). In fact, my
first attempt at solving the problems at hand was using a recursive-descent algorithm.
That prototype was quickly discarded because there was no satisfactory way to handle
left recursion with such an approach. Doing the transformation automatically would
have led to unnecessarily complex code with doubtful efficiency. Requiring it to be done
manually by the user would have meant restricting the possible parse trees that can be
produced. In particular, left-associative arithmetic is naturally left-recursive. Natural
language grammars contain left recursion as well. It is important for the corresponding
parse trees to be produced accurately. Thus, a bottom-up approach was chosen.
My next finding was that the desired applications require supporting general context-free
grammars (and even extensions such as PMCFGs). Such a need implies that algorithms
based purely on deterministic stack automata are not suitable. Such algorithms are re-
stricted to grammar families that can be parsed deterministically (e.g., LALR(k), LR(k),
or LL(k)) and cannot handle arbitrary context-free grammars, even unambiguous ones.
Instead, even in the unambiguous case, an approach considering multiple alternatives at
a time (corresponding to a nondeterministic stack automaton) is needed, such as Gen-
eralized LR (GLR) (Tomita [91], Tomita & Ng [92]). Another important advantage
of such an algorithm is that it can also enumerate all the possibilities in the case of an
ambiguous grammar, which was also a desired property for my algorithm.
However, my main requirement, i.e., allowing to add rules to the grammar at any time,
disqualifies table-driven algorithms such as GLR: recomputing the table is prohibitively
expensive, and doing so while the parsing is in progress is usually not possible at all.
Therefore, I had to restrict myself to information which can be produced dynamically.
This also required introducing some top-down steps into the bottom-up algorithm. The
dynamic information that is used in the DynGenPar algorithm is described below.

2.1.2 The Initial Graph

To fulfill the above requirements, I designed a data structure called the initial graph.
Consider a context-free grammar G = (N, T, P, S), where N is the set of nonterminals,
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T the set of tokens, P the set of productions (rules), and S the start symbol. Then the
initial graph corresponding to G is a directed labeled multigraph on the set of symbols
Γ = N ∪ T of G, defined by the following criteria:

• The tokens T are sources of the graph.
• The graph has an edge from the symbol s ∈ Γ to the nonterminal n ∈ N if and

only if the set of productions P contains a rule p: n → n1 n2 . . . nk s . . . with
ni ∈ N0 for all i, where N0 ⊆ N is the set of all those nonterminals from which the
empty string ε can be derived. The edge is labeled by the pair (p, k), i.e., the rule
(production) p generating the edge and the number k of ni set to ε.

• In the above, if there are multiple valid (p, k) pairs leading from s to n, I define the
edge as a multi-edge with one edge for each pair (p, k), labeled with that pair (p, k).

This graph serves as the replacement for precompiled tables and can easily be updated
as new rules are added to the grammar.
For example, consider the following toy grammar for unconstrained polynomial optimiza-
tion problems G = (N, T, P, S), with

N = {S, Task, Expr, Term, Factor}, T = {min,max,+, ∗, x, NUMBER},

and where P contains the following rules:
• S → Task Expr,
• Task→ min | max,
• Expr→ Expr + Term | Term,
• Term→ Term ∗ Factor | Factor,
• Factor→ x | NUMBER.

The token NUMBER stands for a constant number, and would in practice have a value, e.g.,
of double type, attached.
The initial graph looks as follows:

S

Task

S→Task Expr
<<

Expr

Expr→Expr+Term
��

Term
Expr→Term

ee
Term→Term∗Factor

��

Factor
Term→Factor

OO

min

Task→min

HH

max

Task→max

OO

+ ∗ x

Factor→x

OO

NUMBER

Factor→NUMBER
ff

It shall be noted that there is no edge from, e.g, Expr to S, because Expr appears not
at the beginning, but only in the middle of the rule S → Task Expr (and the Task that
precedes it cannot produce the empty string ε).
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Let s ∈ Γ = N ∪ T be a symbol and z ∈ N be a nonterminal (called the target). The
neighborhood N (s, z) is defined as the set of edges from s to a nonterminal n ∈ N such
that the target z is reachable (in a directed sense) from n in the initial graph. Those
neigborhoods can be computed relatively efficiently by a graph walk and can be cached
as long as the grammar does not change.
In the example, we would have, e.g., N (min, S) = {Task→ min}, N (x, S) = ∅ (because
there is no path from x to S), N (x, Expr) = {Factor → x}, and N (Term, Expr) =
{Expr → Term, Term → Term ∗ Factor}. (In the last example, we also have to consider
the loop, i.e., the left recursion.)

2.1.3 Operations

Given these concepts, we define four elementary operations:
• matchε(n), n ∈ N0: This operation derives n to ε. It works by top-down recursive

expansion, simply ignoring left recursion. This is possible because left-recursive
rules which can produce ε necessarily produce infinitely many syntax trees, and I
decided to require exhaustive parsing only for a finite number of alternatives.

• shift: This operation simply reads in the next token, just as in the LR algorithm.

• reduce(s, z), s ∈ Γ, z ∈ N : This operation reduces the symbol s to the target non-
terminal z. It is based on and named after the LR reduce operation, however it
operates differently: Whereas LR only reduces a fully matched rule, my algorithm
already reduces after the first symbol. This implies that my reduce operation must
complete the match. It does this using the next operation:

• match(s), s ∈ Γ = N ∪ T : This operation is the main operation of the algorithm. It
matches the symbol s against the input, using the following algorithm:

1. If s ∈ N0, try ε-matches first: mε := matchε(s). Now the algorithm only needs
to look for nonempty matches.

2. Start by shifting a token: t := shift.
3. If s ∈ T , the algorithm just needs to compare s with t. If they match, it returns

a leaf as its parse tree, otherwise it returns no matches at all.
4. Otherwise (i.e., if s ∈ N), it returns mε ∪ reduce(t, s).

Given the above operations, the algorithm for reduce(s, z) can be summarized as follows:
1. Pick a rule c→ n1 n2 . . . nk s α1 α2 . . . α` in the neighborhood N (s, z).

2. For each ni (∈ N0 by definition of the neighborhood): Tni
:= matchε(ni).

3. s was already recognized, let Ts be its syntax tree.

4. For each αj ∈ Γ = N ∪T : Tαj
:= match(αj). Note that this is a top-down step, but

that the match operation will again do a bottom-up shift-reduce step.

5. The resulting syntax tree is:
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c

. . .Tα1Ts. . .Tn1

6. If c 6= z, continue reducing recursively (reduce(c, z)) until the target z is reached.
The algorithm also needs to consider reduce(z, z) to support left recursion; this is
the only place in my algorithm where I need to accomodate specifically for left
recursion.

In the case of a conflict between multiple possible reduce operations, the algorithm needs
to consider all the possibilities. It then unifies its matched parse trees into directed
acyclic graphs (DAGs) wherever possible to both reduce storage requirements and
prevent duplicating work in the recursive reduce steps. This is described in more detail
in Section 2.2.3.2.
The algorithm is initialized by calling match(S) on the start symbol S of the grammar.
Conceptually, the remainder happens recursively. The exact sequence of events in my
practical implementation, which allows for predictive parsing, is described in Section
2.2.3.1.

2.1.4 Example

As an example, we show how my algorithm works on the basic grammar for unconstrained
polynomial optimization problems from Section 2.1.2. The example was chosen to be
didactically useful rather than realistic: In later chapters, we shall use the algorithm
for grammars significantly more complex than this example. It shall be noted that in
this example, the set N0 of nonterminal which can be derived to ε is empty. Handling
ε-productions requires some technical tricks (skipped initial nonterminals with empty
derivation in rules, matchε steps), but does not impact the fundamental algorithm.
Consider the input min x * x, a valid sentence in the example grammar. We will denote
the cursor position by a dot, so the initial input is .min x * x. The algorithm always
starts by matching the start category, thus the initial step is match(S). The match step
starts by shifting a token, then tries to reduce it to the symbol being matched. In this
case, the shift step produces the token min, the input is now min.x * x, and the next
step is reduce(min, S), after which the parsing is complete.
It is now the job of the reduce task to get from min to S, and to complete the required
rules by shifting and matching additional tokens. To do this, it starts by looking for a way
to get closer towards S, by looking at the neighborhood N (min, S) = {Task→ min}. In
this case, there is only one rule in the neighborhood, so the algorithm reduces that rule.
The right hand side of the rule is just min, so the rule is already completely matched,
there are no symbols left to match. The algorithm remembers the parse tree

Task

min
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and proceeds recursively with reduce(Task, S).
Now we have N (Task, S) = {S → Task Expr}. There is again only a single rule that
matches, but this time there is an αj left to match: α1 = Expr. Thus, the algorithm
needs to match(Expr); then, the reduce will be complete, because the left hand side S of
the matching rule is already the goal.
So far, the algorithm has recognized the parse tree

S

?

ExprTask

min

and needs to match(Expr). The shift step produces x, leaving it with the input min x.*
x. As before, the algorithm proceeds with a reduce(x, Expr) and looks at the neighborhood
N (x, Expr) = {Factor→ x}. It reduces again the only matching rule, and since the right
hand side of the rule is just x, the rule is already completely matched. The algorithm
remembers the parse tree

Factor

x

and proceeds recursively with reduce(Factor, Expr).
Now we have N (Factor, Expr) = {Term → Factor}. Again, there is only a single rule
that matches and it is fully matched, so the algorithm reduces it, remembers the parse tree

Term

Factor

x

and continues the recursion with reduce(Term, Expr).
This time, the neighborhood N (Term, Expr) = {Expr → Term, Term → Term ∗ Factor}
contains more than one matching rule, we have a reduce-reduce conflict. Therefore,
the algorithm has to consider both possibilities, as in GLR. If it attempts to reduce
Expr→ Term, the parsing terminates here (or it tries reducing the left-recursive Expr→
Expr+Term rule and hits an error on the unmatched + token, highlighted in red in the
rule), but the input is not consumed yet, thus it hits an error. Therefore, it retains only
the option of reducing the left-recursive Term → Term ∗ Factor rule. This time, there
are two remaining symbols: α1 = ∗ and α2 = Factor, thus the algorithm proceeds with
match(∗) and match(Factor). The parse tree matched so far is
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Term

?

Factor

?

∗Term

Factor

x

The match(∗) operation is trivial: ∗ is a token, so the algorithm only needs to shift the
next token and compare it to ∗. The input is now min x *.x, and the match(Factor)
step proceeds by a last shift consuming the last token and yielding the final input min x *
x., and a reduce(x, Factor) which is also trivial because N (x, Factor) = {Factor→ x}.
This completes the subtree

Term

Factor

x

∗Term

Factor

x

Thus the reduction of the left-recursive rule Term → Term ∗ Factor is complete and the
algorithm recursively proceeds with another reduce(Term, Expr). This time, attempting
to reduce the left-recursive rule again yields an error (there is no input left to match the
red ∗ in Term → Term∗Factor against) and the algorithm reduces Expr → Term. Once
again, attempting to reduce the left-recursive rule Expr→ Expr+Term fails because there
is no input to match the red +, thus the algorithm is done.
The final parse tree

S

Expr

Term

Factor

x

∗Term

Factor

x

Task

min

is obtained, which is identical to what other parsing algorithms such as LR would have
produced.
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2.1.5 Analysis

The above algorithm keeps efficiency by combining enough bottom-up techniques to avoid
trouble with left recursion with sufficient top-down operation to avoid the need for tables.
The initial graph ensures that the bottom-up steps never try to reduce unreachable rules,
which is the main inefficiency in existing tableless bottom-up algorithms such as CYK
(Cocke-Younger-Kasami) (Kasami [43], Younger [101]).
One disadvantage of the algorithm is that it produces more conflicts than LR or GLR,
for two reasons: It is not able to make use of any lookahead tokens, unlike common LR
implementations, which are LR(1) rather than LR(0). It also already has to reduce after
the first symbol, whereas LR only needs to make this decision at the end of the rule.
However, this drawback is more than compensated by the fact that it needs neither states
nor tables, only the initial graph which can be dynamically updated. This allows dynamic
rule changes. In addition, conflicts are not fatal because – like GLR – my algorithm is
exhaustive. I designed my implementation to keep its efficiency even in the presence of
conflicts. In particular, it never executes the same match step at the same text position
more than once.

2.2 Implementation

In this section, I first give an overview of the technologies chosen for my implementation.
Then, I describe its licensing and availability. Finally, I document the tweaks to my basic
algorithm made in my implementation to enhance its efficiency and functionality.

2.2.1 Technologies and API

My implementation is written in C++ using the Qt 4 (Qt Company [74]) toolkit. I
used the g++ (Free Software Foundation [29]) compiler. The application pro-
gramming interface (API) is documented in Kofler [50]. It consists of C++ classes
using Qt implicitly-shared data structures, i.e., object references with automatic reference
counting that combine the convenient semantics of copies with the efficiency of shared
pointers.
I also implemented Java bindings using the Qt Jambi (Voutilainen et al. [96]) binding
generator to allow its usage in Java programs, such as Concise (Schodl et al. [87], Domes
[22]), the main client application of DynGenPar, a GUI for semantic graph manipulation
which will be described in Chapter 3. The Java API is very similar to the C++ API,
but Qt data structures are converted to native Java data structures. In particular, the
references are not implicitly shared as in C++ with Qt, but follow the standard Java
reference model. Copies have to be requested explicitly using the clone() method, as for
any other Java object. Other minor differences between the C++ and Java APIs are due
to technical limitations of Qt Jambi. They are detailed in Kofler [50].
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I picked version 4 of Qt because it was the latest available when development started. In
addition, as of 2015, Qt Jambi still does not support Qt 5.

2.2.2 Licensing and Availability

The DynGenPar implementation is licensed under the GNU General Public License (Free
Software Foundation [30, 31]), version 2 or later. In addition, a bundled version
of DynGenPar is distributed as part of the Concise (Schodl et al. [87], Domes [22])
framework under the same terms as Concise.
The source code is available for free download at Kofler [47].

2.2.3 Implementation Considerations

This section documents some tweaks I made to the basic algorithm from Section 2.1 to
improve efficiency and provide additional desired features. I describe the modifications
required to support predictive parsing, efficient exhaustive parsing, peculiarities of natural
language, arbitrary rule labels, custom parse actions and next token constraints. Next, I
briefly introduce my flexible approach to lexing.

2.2.3.1 Predictive Parsing

The most intuitive approach to implement the above algorithm would be to use straight
recursion with implicit parse stacks and backtracking. However, that approach does not
allow incremental operation, and it does not allow discarding short matches (i.e., prefixes
of the input which already match the start symbol) until the very end. Therefore, I re-
placed the backtracking by explicit parse stacks, with token shift operations driving the
parse process: Each time a token has to be shifted, the current stack is saved and process-
ing stops there. Once the token is actually shifted, all the pending stacks are processed,
with the shift executed. If there is no valid match, the parse stack is discarded, otherwise
it is updated. The implementation also remembers complete matches (where the entire
start symbol S was matched) and returns them if the end of input was reached, other-
wise it discards them when the next token is shifted. This method allows for incremental
processing of input and easy pinpointing of error locations. It also allows changing the
grammar rules for a specific range of text only.
The possible options for the next token and the nonterminal generating it can be predicted.
This is implemented in a straightforward way by inspecting the parse stacks for the
next pending match, which yields the next highest-level symbol, and if that symbol is a
nonterminal, performing a top-down expansion (ignoring left recursion) on that symbol
to obtain the possible initial tokens for that symbol, along with the nonterminal directly
producing them. Once a token is selected, parsing can be continued directly from where it
was left off using the incremental parsing technique described in the previous paragraph.
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2.2.3.2 Efficient Exhaustive Parsing

In order to achieve efficiency in the presence of ambiguities, the parse stacks are organized
in a directed acyclic graph (DAG) structure similar to the GLR algorithm’s graph-
structured stacks. (Tomita [91], Tomita & Ng [92]) In particular, a match operation
can have multiple parents, and my algorithm produces a unified stack entry for identical
match operations at the same position, with all the parents grouped together. This
prevents having to repeat the match more than once. Only once the match is completed,
the stacks are separated again.
Parse trees are represented as packed forests. Top-down sharing is explicit: Any node in
a parse tree can have multiple alternative subtrees, allowing to duplicate only the local
areas where there are ambiguities and share the rest. This representation is created by
explicit unification steps. This sharing also ensures that the subsequent reduce operations
will be executed only once on the shared parse DAG, not once per alternative. Bottom-up
sharing, i.e., multiple alternatives having common subtrees, is handled implicitly through
the use of reference-counted implicitly shared data structures, and through the graph-
structured stacks ensuring that the structures are parsed only once and that the same
structures are referenced everywhere.

2.2.3.3 Rule Labels

My implementation allows labeling rules with arbitrary data. The labels are reproduced
in the parse trees. This feature is essential in many applications to efficiently identify the
rule which was used to derive the relevant portion of the parse tree.

2.2.3.4 Custom Parse Actions

The algorithm as described in Section 2.1 generates only a plain parse tree and cannot
execute any other actions according to the grammar rules. But in order to efficiently
support things such as mathematical definitions, I need to be able to automatically trigger
the addition of a new grammar rule (which can be done very efficiently by updating the
initial graph) by the encountering of the definition. Therefore, the implementation makes
it possible to attach an action to a rule, which will be executed when the rule is matched.
This is implemented by calling the action at the end of a matchRemaining step, when the
full rule has been matched.

2.2.3.5 Token Sources

The implementation can be interfaced with several different types of token sources, e.g., a
Flex (Flex Project [26]) lexer, a custom lexer, a buffer of pre-lexed tokens, a dummy
lexer returning each character individually etc. The token source may or may not attach
data to the tokens, e.g., a lexer will want to attach the value of the integer to INTEGER
tokens.
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The token source can also return a whole parse tree instead of the usual leaf node. That
parse tree will be attached in place of the leaf. This feature makes hierarchical parsing
possible: Using this approach, the token source can run another instance of the parser
(DynGenPar is fully reentrant) or a different parser (e.g., a formula parser) on a token
and return the resulting parse tree.

2.2.3.6 Natural Language

Natural language, even the subset used for mathematics, poses some additional challenges
to my implementation. There are two ways in which natural language is not context free:
attributes (which have to agree, e.g., for declination or conjugation) and other context sen-
sitivities best represented by parallel multiple context-free grammars (PMCFGs)
(Seki et al. [88]).
Agreement issues are the most obvious context sensitivity in natural languages. However,
they are easily addressed: One can allow each nonterminal to have attributes (e.g., the
grammatical number, i.e., singular or plural), which can be inherent to the grammatical
category (e.g., the number of a noun phrase) or variable parameters (e.g., the number for
a verb). Those attributes must agree, which in practice means that each attribute must be
inherent for exactly one category and that the parameters inherit the value of the inherent
attribute. While this does not look context-free at first, it can be transformed to a CFG
(as long as the attribute sets are finite) by making a copy of a given nonterminal for each
value of each parameter and by making a copy of a given production for each value of
each inherent attribute used in the rule. This transformation can be done automatically,
e.g., the GF (Grammatical Framework) compiler does this for grammars written in the
GF programming language.
A less obvious, but more difficult problem is given by split categories, e.g., verb forms with
an auxiliary and a participle, which grammatically belong together, but are separated in
the text. The best solution in that case is to generalize the concept of CFGs to PMCFGs
(Seki et al. [88]), which allow nonterminals to have multiple dimensions. Rules in a
PMCFG are described by functions which can use the same argument more than once,
in particular also multiple elements of a multi-dimensional category. PMCFGs are more
expressive than CFGs, which implies that they cannot be transformed to CFGs. They
can, however, be parsed by context-free approximation with additional constraints. My
approach to handling PMCFGs is based on this idea. However, it does not use the
naive and inefficient approach of first parsing the context-free approximation and then
filtering the result, but it enforces the constraints directly during parsing, leading to
maximum efficiency and avoiding the need for subsequent filtering. This is achieved by
keeping track of the constraints that apply, and immediately expanding rules in a top-
down fashion (during the match step) if a constraint forces the application of a specific
rule. The produced parse trees are CFG parse trees which are transformed to PMCFG
syntax trees by a subsequent unification algorithm, but the parsing algorithm ensures that
only CFG parse trees which can be successfully unified are produced, saving time both
during parsing and during unification. This unification process uses DynGenPar’s feature
to attach, to CFG rules, arbitrary rule labels which will be reproduced in the parse tree:
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The automatically generated label of the CFG rule is an object containing a pointer to
the PMCFG rule and all other information needed for the unification.

2.2.3.7 Next Token Constraints

My implementation also makes it possible to attach constraints on the token following a
rule, i.e., that said token must or must not match a given context-free symbol, to that
rule. I call such constraints next token constraints. This feature can be used to imple-
ment scannerless parsing patterns, in particular, maximally-matched character sequences,
but also to restrict the words following e.g., “a” or “an” in word-oriented grammars. I
implement this by collecting the next token constraints as rules are reduced or expanded
and attaching them to the parse stacks used for predictive parsing. Each time a to-
ken is shifted, before processing the pending stacks, the implementation checks whether
the shifted token fulfills the pending constraints and rejects the stacks whose constraints
aren’t satisfied.



Chapter 3

DynGenPar and Concise

Concise (Schodl et al. [87], Domes [22]) is a framework and GUI for viewing and
manipulating, both graphically and programmatically, semantic graphs. A semantic
graph is a labeled directed multigraph representing semantic information.
Concise is the main application in the FMathL project (Neumaier [70]). DynGenPar, as
the parser of choice in the FMathL project, plays a central role in Concise. DynGenPar
enables Concise to parse input using grammars specified in external text files and loaded
at runtime. Concise uses this feature internally for its own programming languages. This
feature is also the way to teach Concise a new formal language or a new controlled subset
of natural language. Such applications are the subject of the next chapters. The same
grammars that allow parsing input using DynGenPar also enable producing output as
text files or graphical text views. The prediction functionality of DynGenPar enables
editable file views with autocompletion.
Concise is written in Java, whereas DynGenPar is written in C++. Therefore, DynGenPar
is used through its Java bindings (see Section 2.2.1) in Concise. Those bindings enable
using the C++ code of DynGenPar as if it were implemented in Java.
After giving a short introduction to Concise, this chapter discusses the interaction between
DynGenPar and Concise and the functionality it enables in Concise.

3.1 Concise

Concise is a framework for the manipulation of semantic graphs, i.e., labeled directed
multigraphs with a semantic interpretation. It is written in Java. The core of Concise is
called the semantic memory, a large semantic graph of which all the semantic graphs
processed by Concise are subgraphs. It consists of objects, the nodes in the graph, and
sems, the edges.
Concepts are stored in the semantic memory as sems. Every sem relates three objects:
a handle, a field and an entry. It is denoted handle.field = entry. In the graph
interpretation, the sem is an edge from the handle to the entry, labeled with the field.
The mapping from handle and field to the entry is unique, i.e., the dot operator . is
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Figure 3.1: Screenshot of Concise showing two graph views

a partial function. On the other hand, there may be multiple fields relating the same
handle to the same entry, which makes the semantic graph a multigraph. The sems are
also naturally directed, because x.f = y is a totally different sem from y.f = x.
An alternative interpretation of sems relates them to triplets (handle, field, entry), as
found, e.g., in the RDF (Resource Description Framework) (W3C [98])
standard. However, unlike RDF, Concise does not allow multiple entries for the same
(handle, field) pair, i.e., its . operation is a true partial function, not a multi-valued
map. Therefore, Concise frequently relies on linked lists, which are used to represent
concepts that would otherwise require one (handle, field) pair to carry multiple entries.
Unlike multi-valued entries, linked lists are naturally ordered. They are also friendly to
parsing, because they are exactly the trees produced for lists by a context-free parser.
In addition, Concise also supports external objects. Those are objects representing a
value that is stored outside of the semantic memory. Concise currently supports the
following types for external objects (external types): Abstract2DShape, Array,
Boolean, Character, Color, Dimension, Double, DoubleInterval, EscapedCharacter,
EscapedString, EscapedUniqueString, File, Font, Integer, IntegerInterval,
IntegerName, Matrix, Name, Picture, Point, Rectangle, String, TextLine, Timer,
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Figure 3.2: Screenshot of Concise showing a record view

UniqueString, and Vector. Each external type is implemented as a Java class inside
Concise. To add support for an additional external type, one would simply implement
one more such Java class.
To users, Concise presents itself as an interactive GUI for graph editing, which operates
on the semantic memory as described above. The Concise GUI offers several editable
views of semantic content. The primary view is the graph view (Figure 3.1), in which
the semantic memory is drawn as a graph, with the nodes (objects) represented as ellipses
and the edges (sems) as lines. As the entire semantic memory is a huge graph which is
impractical to draw as a whole, the graph view allows interactively expanding or collapsing
subgraphs, and it is also possible to bring up a graph view restricted to a subgraph. An
additional view is the record view (Figure 3.2), which represents subtrees of the graph
as records. It displays fields and their corresponding entries as an expandable tree: Each
entry can be expanded to show, in turn, its own fields and corresponding entries, and this
can be repeated recursively. (In GUI programming, this is called the tree view pattern.)
Finally, there is the text view (Figure 3.3), a textual representation of records which will
be described in detail in Section 3.3.4. Non-tree structures (where multiple edges point
to the same entry) are displayed in the record view as references to a common subrecord;
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Figure 3.3: Screenshot of Concise showing a text view

in the text view, the text for the common subgraph is simply copied.
Concise views can also operate on external objects. Most notably, there are parsable
file views, operating on files. Parsable file views are embedded text editor views for text
files that can be parsed with DynGenPar, i.e., that are written in a formal language for
which a DynGenPar grammar is available. They make use of the prediction functionality
of DynGenPar to offer autocompletion. They will be described in detail in Section 3.3.5.
Concise can also execute programs operating on the content of the semantic memory, and
supports importing information from and exporting it to various types of textual files:
view sheets, record sheets, type sheets, and code sheets. Those operations can
be done both interactively through the GUI and automatically, using the Concise core
directly.
The first type of sheets that Concise can import and export represent arbitrary seman-
tic memory contents. There are two formats for such sheets: View sheets (.cnv) are
the internal serialization format of Concise. While in a text format, they are not easily
readable by humans, because they are a raw dump of the graph edges, representing the
objects by their numeric IDs. Record sheets (.cnr) should instead be preferred for
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readability. They describe records in a human-readable, tree-structured text form. As in
the interactive record view, non-tree structures such as shared subgraphs and cycles are
represented through the use of labels. The default .cnr representation is a compact cus-
tom text format; an alternative XML (eXtensible Markup Language) representation
exists, but is significantly (about 2 to 4 times) larger.
Another important kind of Concise sheets is the type sheet (.cnt). It describes a
type system, i.e., the specification of several types, in a human-readable text form. The
specification of a type consists of required fields, optional fields, etc., e.g.:
header:
allOf> title=paragraph
optional> abstract=parLink

keywords=paragraph
authors=paragraph
date=paragraph
copyright=paragraph
comment=paragraph

This specification says that a header always contains a field title of type paragraph,
and that it may or may not contain fields abstract of type parLink, keywords of type
paragraph, etc. (but if the fields are present, they must have the required type). The
details of the FMathL type system implemented in Concise can be found in Schodl &
Neumaier [86]. Type sheets can also carry grammatical information, specifying how
to parse or linearize the types, turning them into context-free grammars. This will be
described in more detail in the next section and in Section 4.1.
The remaining types of Concise sheets are the code sheet (.cnc), which represents
programs in the semantic memory in a language documented in Section 4.2.2, and the
automatically generated package sheet (.cnp), which documents a package of external
functions which can be used in programs or for text formatting and is automatically
exported from the help data included in the Java classes implementing those functions.
Code sheets cannot be exported, package sheets cannot be imported.

3.2 Embedding of DynGenPar into Concise

In order to integrate DynGenPar into the Java-based Concise framework, as already men-
tioned in Section 2.2.1, the Qt Jambi (Voutilainen et al. [96]) binding generator was
used to produce Java bindings for DynGenPar. A short XML (eXtensible Markup
Language) file was written containing rules for the binding generator, Qt Jambi auto-
matically takes care of generating the complex JNI (Java Native Interface) code for
the bindings. That generated code wraps C++ classes as Java classes, even allowing
classes written in Java to extend the wrapped C++ classes and implement their virtual
methods. This allows C++ code to call back into a method implemented in Java without
even having to know that it is in fact calling Java code. It also automatically handles
conversion between Qt’s template data structures (e.g., QList, QHash, etc.) and the Java
generic equivalents. However, some code generation bugs were encountered with nested
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containers which do not appear in the code of Qt itself (the code the binding generator
was tested with); fixes for those bugs were submitted to the Qt Jambi project. Another
feature of Qt Jambi DynGenPar makes use of is the mapping of untyped data between
Qt’s QVariant and Java’s java.lang.Object.
As described in the previous section, the FMathL type system (Schodl & Neumaier
[86]) is represented in the form of text files called type sheets. Those type sheets not
only represent a pure type hierarchy, but may also carry grammatical annotations called
usages, which allow the type system to double as a grammar. A usage is attached to a
type definition and can serve one of four purposes:

• input usage: a grammar rule describing how to parse the type,

• output usage: a grammar rule describing how to linearize the type for text output.
A special case of output usage is the text view usage for use in the text views (see
the previous section), which can contain calls to text formatting functions.

• token source usage: a rule listing the tokens that should be produced when
linearizing the record (of a text-oriented type) to a stream of tokens for the parser,
in order to obtain a record of a semantic-oriented type,

• help usage: a rule giving documentation for the type, in the form of text which
can contain calls to text formatting functions.

E.g., the example type definition from the previous section is actually given in the
TextDocument.cnt type sheet with the following token source and text view usages:
header:
allOf> title=paragraph
optional> abstract=parLink

keywords=paragraph
authors=paragraph
date=paragraph
copyright=paragraph
comment=paragraph

#ts> #title#abstract#keywords#authors#date#copyright#comment
#w> #!setFontSize&(19&) #!setColor&(255&, 0&, 0&) #!setBold&(&) &&

&[#title&n&] #!resetAttribs&(&) &&
#!toggleItalic&(&) &&
&[Abstract:#abstract&n&] &&
&[Keywords:#keywords&n&] &&
&[Authors:#authors&n&] &&
&[at #date&n&] &&
&[Copyright:#copyright&n&] &&
&[Comment:#comment&n&] &&
#!toggleItalic&(&)

The token source usage #ts> specifies that, when using this record as input for parsing,
the parser should simply be passed the token stream for each of the fields in sequence (but
in practice, a header record will not actually be sent to the parser, see Section 6.2 for
how the token source usages in TextDocument.cnt are used). The text view usage #w>
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instructs the text view to print the title in large, red, bold letters and the optional fields,
if present, in italics, preceded by the name of the field (or by “at” for the date). The
complete usage syntax can be found in Section 4.1. The example shows the usage syn-
tax for field references (e.g., #title), function calls (e.g., #!setColor&(255&, 0&, 0&)),
optional parts (&[. . . &]) and line continuation (&&).
But the most important type of usage for parsing is the input usage, because a type sheet
with input usages is equivalent to a grammar in Backus-Naur form (BNF), augmented
with a specification of the record representation of the syntax tree. I implemented a Java
class concise.parser.Grammar inside Concise around the DynGenPar Java bindings. It
takes as input the internal Concise representation (concise.types.system.TypeSystem)
of a type sheet annotated with input usages and produces a grammar in DynGenPar’s
internal representation (concise.DynGenPar.Cfg), which parses a token stream and out-
puts valid records for the given type system. In addition to standard context-free gram-
mars, the context-sensitive constraints supported by DynGenPar can also be represented
this way: next token constraints (Section 2.2.3.7) and parallel multiple context-free gram-
mar (PMCFG) (Seki et al. [88]) constraints (Section 2.2.3.6). My code currently supports
two possible token sources:

• DynGenPar’s built-in TextByteTokenSource. This simply produces one token for
every character in the input (except that it strips the carriage return CR out of CR
LF – carriage return + line feed – line endings), allowing for scannerless parsing of
arbitrary text, and

• a special ConciseTokenSource. This linearizes a Concise type into a stream of
tokens which are sent to the parser, allowing to use DynGenPar to convert a record
containing unparsed text into a record representing the same text semantically. This
token source is part of the TextDocument toolchain described in Section 6.2.

However, most of the conversion process is independent of the underlying token source.
In order to produce Concise records as output, the concise.parser.Grammar class at-
taches to every rule labels that are actually Java objects building a Concise record in
its Java representation. This is possible because DynGenPar accepts a QVariant as a
label, and Qt Jambi allows storing an arbitrary Java object reference inside a QVariant.
After parsing, Concise calls the concise.parser.Grammar.parseTreeToRecord method
that traverses the parse tree produced by DynGenPar and calls all the labels to build the
resulting Concise record.
The rule labels can be of one of the following Java classes:

• NewRecordBuilder: Creates a new record of a given type. Every item index in the
rule can be either ignored or mapped to one of the following:

– a field in the new record, or
– a subrule, processed using the IncrementalRecordBuilder below (used where

the original rule contains extended Backus-Naur form (EBNF) and must
be decomposed to multiple plain BNF rules), or

– a “leaf” field, where the matched item in the parse tree is assumed to be a
token and the field in the new record is set to its attached value.



40 CHAPTER 3. DYNGENPAR AND CONCISE

• IncrementalRecordBuilder: Like NewRecordBuilder, but instead of creating a
new record, the fields are added to the record created by the parent
NewRecordBuilder.

• RecordCaster: Converts a record to another type. This is used in union rules, to
upcast a record to its supertype.

• TokenCollector: Recursively collects all the matched tokens in a list. If a nonter-
minal is matched, the token collector for that nonterminal is invoked to collect its
own tokens and the whole list is inserted in the place of the nonterminal. This label
is used for lexical rules, which do not produce a record.

• TokenEmitter: A special case of token collector. It ignores the matched tokens and
“collects” a set of replacement tokens instead. It is used to implement substitution
rules, which convert an escaped input to unescaped output.

• ExternalCaster: Recursively collects the matched tokens like a TokenCollector,
builds a string from them, converts it to the given external type (see Section 3.1),
and finally casts it to a given final type like a RecordCaster. This is the top-level
token collector and the interface between token collection and record building. The
result is an external object and thus a leaf record.

• ExternalNameBuilder: Creates an external object of type Name with the given
name. It is used for rules dynamically added through definitions, which will be
described in Section 6.3.

Concise can import type sheets at runtime and, using the above process, automatically
convert them to grammar rules suitable for DynGenPar and then parse documents using
the converted grammar. Therefore, user-written rules can be fully read into the parser
at runtime, rather than hardcoding them as C++ or Java code or compiling them to
some other precompiled format (such as the PGF format of the Grammatical Framework
(GF), which DynGenPar also supports, see Section 5.2). Concise type sheets represent a
user-friendly mechanism for specifying rules that can be easily converted to my internal
representation. This feature is thus an ideal showcase for the dynamic properties of my
algorithm.

3.3 Concise Features based on DynGenPar

The Concise GUI fully integrates my DynGenPar parser into its application workflow.
Several features of Concise make use of DynGenPar. This section describes where and
how my parser is used in Concise.

3.3.1 Type Sheets

Type sheets (as described in the previous section) not only serve as the representation of
grammars in Concise, they are also themselves parsed using DynGenPar, using a grammar
which will be described in Section 4.1.
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Concise originally had a rudimentary parser for type sheets hardcoded in Java. That basic
parser is still included for compatibility reasons and as a fallback. However, it supports
only a subset of the type sheet syntax, and thus cannot parse most of the current type
sheets.
Therefore, Concise now parses type sheets using a grammar that is itself a type sheet,
TypeSheets.cnt. Because of the bootstrapping issues this would cause, I manually con-
verted the grammar to a C++ program, cnttoxml, using DynGenPar’s native C++ API.
That program converts the type sheets to record sheets (in an XML representation, which
is then converted with another C++ program to a .cnr record sheet).
Thus, Concise loads type sheets by:

1. converting them to record sheets using these external programs,
2. importing the resulting record sheets, and
3. converting those records of TypeSheets type to native type systems.

3.3.2 Code Sheets

Code sheets are the language in which programs for Concise are represented. These are
also read using a type sheet, CodeSheets.cnt (see Section 4.2.2), and DynGenPar. In
this case, no external bootstrap parser is needed. The parsing is based directly on the
type sheet and on the concise.parser.Grammar class described in Section 3.2. It is
then further translated into an internal representation and executed. See Section 4.2 for
details.

3.3.3 Record Transformations

It is often necessary in Concise to convert records from one representation (in one type
system) to another (in a different type system). Typically, the source type system is used
for parsing, the destination type system is the internal, more semantic representation.
But there are also other transformations, e.g., in the opposite direction, or simplifications
within the same type system.
For this purpose, Concise supports record transformations, which convert a record
from one type system to another. The two given type systems can also be the same,
as in the case of a simplifier. A record transformation can be run from the GUI menus
or internally by Concise. Record transformation sheets are the source language in
which record transformations are represented. These are also read using a type sheet,
RecordTransformation.cnt (see Section 4.3), and DynGenPar.

3.3.4 Text Views

Text views are Concise views displaying a textual representation of records. Figure 3.4
shows two text views. They work using the usages, i.e., the grammatical annotations in
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Figure 3.4: Two text views, displaying the parsed (using the BasicDefinitions type
sheet from Section 6.3 and the LaTeXFormulas type sheet from Section 6.5) and unparsed
representation of a LATEX document side by side

type sheets which are also used for parsing, described in Section 3.2. However, unlike the
parser, which uses input usages, the text views use output usages. They produce text
output for the records by doing linearization, i.e., the opposite of parsing.
The text view operates by recursing on the record. For every object it encounters, it
checks the type of that object for a matching output usage. It displays as output the
text of the usage, expanding any placeholders it contains. The most common placeholder
is #field , which tells the text view to insert the text output for the given field at the
position of the placeholder. This leads to the aforementioned recursive operation.
An additional feature that text views support is formatting. This is implemented through
functions that the usages can call. The following functions are currently available (quoting
the file ExternalFunctions.cnp automatically generated by Concise):

• ifNotEmpty(testarg, text) – If the first argument is not empty, the second will
be written to the output.

• resetAttribs – Reset all style attributes to their default values.
• resetColor – Reset the color attribute to its default value.
• resetFontSize – Reset the font size attribute to its default value.
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• setBold – Set the bold attribute.

• setColor(red, green, blue) – Set the color attribute to the given rgb value.

• setFontSize(size) – Set the font size attribute to the given value.

• setItalic – Set the italic attribute.

• setNonBold – Clear the bold attribute.

• setNonItalic – Clear the italic attribute.

• toggleBold – Toggle the bold attribute.

• toggleItalic – Toggle the italic attribute.
While in some cases, different usages are required for linearization than for parsing, in
many cases the same usages can be shared for both input and output. This implies that
the grammar written for DynGenPar can also, with minor changes, be used to visualize
the record produced by the parser in a text view. While the text views themselves do
not directly use DynGenPar, this property makes them closely related to DynGenPar
grammars.
Concise text views were primarily implemented by Ferenc Domes, the main author of
Concise. However, I made some improvements to the text views which make it easier to
write usages for text views and allow reusing parser rules more often. In particular:

• I added support for optional parts, i.e., &[. . . &] items. They are processed as follows:
If the object has all the fields referenced inside the optional part, it is expanded,
otherwise, it is skipped. This avoids the need for many ifNotEmpty calls and often
allows using the same rule as for parsing. In addition, unlike with ifNotEmpty, if
the optional part is skipped, so are any calls to formatting functions it contains.

• I implemented the toggleBold and toggleItalic functions. Especially
toggleItalic is very useful because it is customary to display italics within italics
as straight letters. These functions also avoid calling setNonItalic, which would
reset the italic flag even within a section supposed to be entirely in italics, and
likewise for setNonBold.

• I implemented a basic unlexer, which takes care of inserting the correct whitespace
between words and punctuation characters, and which automatically capitalizes the
first word of a sentence.

• I fixed several bugs I encountered while testing the text views on my grammars.

• I added a feature that allows disambiguating ambiguous records produced by the
parser. See Section 6.5 for details.

A planned future extension is to allow editable text views. DynGenPar can, through its
incremental processing of input, validate user input in real time, and produce a valid
record as soon as the input is complete. In addition, its prediction functionalities can be
used to provide intelligent autocompletion. Such autocompletion is already implemented
in Concise in the parsable file views, described in the next section. It is planned to also
adapt that functionality to the text views.
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3.3.5 Parsable File Views

Figure 3.5: A type sheet view (a parsable file view operating on the grammar for type
sheets, see Section 4.1) showing the autocompletion popup

Parsable file views are embedded text editor views for text files that can be parsed with
DynGenPar, i.e., that are written in a formal language for which a DynGenPar gram-
mar is available. They make use of the prediction functionality of DynGenPar to offer
autocompletion. The user interface was implemented by Ferenc Domes, the interface to
DynGenPar by me. Figure 3.5 shows a parsable file view for a type sheet.
The parsable file views allow validating the input and producing a valid record at the
press of a button. The user experience is similar to how modern integrated development
environments (IDEs) for programming languages work. However, in Concise, everything
is done within the Concise application using DynGenPar.
The parsable file views also support intelligent autocompletion. The autocompletion
popups list valid continuations for the input. Since the text grammars in Concise are
scannerless, instead of tokens, the prediction suggests literals, i.e., sequences of characters
that appear together in a rule. E.g., if the rule contains a keyword, the whole keyword is
returned, not just one character (token) from it. (Note that to make longer completion
suggestions than such a literal, one would in general have to introduce placeholders as in
de Souza Amorim et al. [19].) The type sheet defining the grammar can also define
completion filters, which replace verbose output by a given summary. E.g., instead of
offering every single letter in the alphabet, a filter can make the popup display the string
“any letter”.
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When the completion popup is open, the incremental processing of input of DynGenPar
is used to update the popup in real time. The new suggestions after entering a character
are produced virtually instantly. E.g., if the grammar contains the keywords when and
while, and if both are applicable in the current context, the completion popup after wh
will initially offer both options. After entering the additional letter i, the predictions
are updated using the incremental parsing of DynGenPar, and only the keyword while
is offered. However, the predictions are really recomputed, not just filtered. This means
that new suggestions can come up, which is the case if a complete literal has been typed
in.
A prior proof of concept of such predictive input is included with DynGenPar as a stan-
dalone application, operating on PGF grammars compiled by the Grammatical Frame-
work (GF), see Section 5.4. The parsable file views improve on that concept by allowing
freeform text entry, whereas the proof of concept allowed only selection of choices from
the completion list.
It is planned for the future to also integrate this functionality into the text views, so that
records can also be edited directly in the semantic memory, with the same convenient
features.
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Chapter 4

Applications of DynGenPar to
Formal Languages

As we have seen in Chapter 2, DynGenPar is a context-free parser with several unique
additional features. Though some of those features are targeted primarily at natural
language processing, DynGenPar can of course also parse fully formalized languages. This
chapter details the formal languages for which DynGenPar has been successfully applied.
Applications of DynGenPar closer to natural language will be the subject of Chapter 6.
As described in the previous chapter, DynGenPar is the parser of choice for Concise,
the engine behind the FMathL project. For this project, a suitable parser for natural
language processing research was needed. I wrote DynGenPar to fit those requirements
and integrated it into Concise. It was subsequently decided to use DynGenPar for all
tasks requiring a context-free parser in Concise. This had several advantages. For one, the
infrastructure around DynGenPar in Concise could be reused. In particular, the grammars
can be described as Concise type sheets (see Sections 3.2 and 4.1). Secondly, this avoided
having to require in Concise an additional parser beyond our control. And finally, some
features of DynGenPar, e.g., the scannerless parsing support, are also very useful for
formal grammars. One of the grammars in this chapter, a grammar for optimization
problems, also makes use of the DynGenPar feature that allows to dynamically add rules
to the grammar. The feature is used to support a \newcommand command as in LATEX.
This chapter enumerates and documents the formal languages to which DynGenPar was
applied. First, grammars for type sheets, code sheets, and record transformation sheets,
which are core parts of Concise, are described. Then, a grammar for chemical process
modeling using the Concise framework is detailed. Next, an extensible grammar for
optimization problems demonstrating the dynamic grammar extensibility of DynGenPar
is documented. Finally, a grammar for a subset of the AMPL (Fourer et al. [27], AMPL
Optimization inc. [2]) modeling language for optimization problems, extended to allow
intervals wherever AMPL normally expects a number, is detailed.
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4.1 A Grammar for Type Sheets

The most important application of DynGenPar in the core of Concise is the grammar for
type sheets. As explained in Section 3.2, a type sheet is the textual representation of
a Concise type system. The type sheet may or may not include grammar information.
The most interesting type sheets for DynGenPar are of course those which do encode a
grammar.
The grammar for type sheets is itself given in the form of a type sheet, TypeSheets.cnt,
reproduced in Appendix A. The following paragraphs are based on the introduction of
that type sheet (Neumaier & Kofler, Appendix A).
The information required for parsing and views is specified by productions. There are two
kinds of such productions: Literal productions are global to the entire type sheet and
follow a line consisting only of a colon : (and optional comments). They are used for re-
curring, purely lexical patterns which do not appear in the final syntax tree. Categorical
productions are local to a category and follow the type definition of that category. They
describe a textual representation for that particular category. (Neumaier & Kofler,
Appendix A)
Within productions (only), the exclamation mark !, the hash #, the ampersand &, the
newline characters and the blanks are escaped, since they have syntactic meaning in the
grammar for the type sheet.

• &! encodes the exclamation mark, and &# encodes the hash #.

• &n encodes a newline. &b encodes a blank, &t encodes a tab, and &c encodes a
backspace.

• &0, . . . , &9 encode strings consisting of 0, . . . , 9 ampersands, each of which is fed to
the parser as an individual token.

• Both &0 and && followed by a newline denote the empty string.
Regular expression syntax is encoded as follows:

• &[. . . &] is optional (appears at most once).

• &(. . . &) appears once.

• &{. . . &} appears n times, n ≥ 0.

• &<. . . &> appears n times, n ≥ 1.

• &| separates alternatives in a pattern.
Note that the ampersands before the brackets or | must be present, since otherwise the
symbol is treated as a character! (Neumaier & Kofler, Appendix A)
Lexical matching conditions use the following syntax:

• &^ accepts the preceding single-character pattern match if and only if the following
pattern does not match the same character (set difference). This consumes both
patterns.
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• &E accepts the preceding pattern match if and only if the following single-character
pattern matches the next character (“expect” constraint), otherwise the pattern fails
to match entirely (i.e., this fails the entire rule unless there is another &| alternative
which matches). This consumes the preceding pattern only.

• &T accepts the preceding pattern match if and only if the following single-character
pattern does not match the next character (“taboo” constraint), otherwise the pat-
tern fails to match entirely (i.e., this fails the entire rule unless there’s another &|
alternative which matches). This consumes the preceding pattern only.

• &+ maximally extends the preceding pattern of the form &{#char&} or &<#char&>,
where #char is a single-character pattern.

Single-character patterns may contain any extended Backus-Naur form (EBNF, i.e., regu-
lar expression syntax and variable references), but no further &^, &E, &T or &+. (Neumaier
& Kofler, Appendix A)
Variable references are encoded as follows:

• #fieldName – recurse to the entry referenced by the field of name fieldName and
process the productions for the new object. The special word &this is not allowed
as a fieldName.

• #>fieldName – the name of the entry referenced by the field of name fieldName, or
the value in case the entry is an external object (see Section 3.1). The fieldName
&this is used for referencing the current object itself rather than one of its fields.

• #=fieldName – the ID of the entry referenced by the field of name fieldName in the
current semantic memory. The ID is a negative integer for external objects and
a nonnegative integer otherwise. The fieldName &this is used for referencing the
current object itself rather than one of its fields.

• ##name – reference to a literal variable (i.e., to a variable defined by a literal pro-
duction) of name name

Function calls are denoted by #!name&(, followed by a list of patterns separated by
the &, separator, followed by &). This calls a function of name name with arguments
separated by &,. Which functions can be used depends on the context. For productions
targeting text views, the text formatting functions listed in Section 3.3.4 are available.
For productions used with the ConciseTokenSource, which linearizes a category into a
stream of tokens that are sent to DynGenPar, a function named out is provided. The out
function takes one required parameter, an integer representing the ID of the token to be
sent to DynGenPar. An optional second integer parameter can be used to attach a value
to the token. The out function may also be used in productions used for parsing, where
it is processed the inverse way. This is done by matching the token given as the first
parameter and inputting the second parameter from the token’s value. In that context,
the first parameter (the token to match) must be constant, the second parameter, if given,
must be of the #=fieldName form, and the field fieldName of the output record is set to
the object whose ID is contained in the token’s value. (Neumaier & Kofler, Appendix
A)
The special syntax &=&(pattern&) is most useful to define the first parameter of the out
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function described above. It converts a value pattern of one of the types for external data
supported by Concise (string, integer, float, etc., see Section 3.1) into the ID representing
that value in the semantic memory, a negative integer. E.g., &=&(NEWCONCEPT&) is the ID
of the string "NEWCONCEPT" in the current semantic memory. (Neumaier & Kofler,
Appendix A)
The type sheet TypeSheets.cnt can of course be automatically imported into Concise and
DynGenPar through the process from Section 3.2. The resulting internal representation
of the grammar is reproduced in Appendix B. The grammar thus obtained can parse
TypeSheets.cnt itself. This process can be reiterated and passes bootstrap comparison,
i.e., the same result is obtained after each step.
The internal representation is very informative. It not only illustrates the conversion
process, but also gives a non-self-referential description of the type sheets grammar. It is
a grammar in the standard Backus-Naur form (BNF), with only a few extensions:

• The rules have labels (see Section 2.2.3.3), which are references to Java objects.
They are used during the conversion process from the parse tree to a Concise syntax
record. Each label object constructs the corresponding portion of the parse tree.
The different types of label objects are documented in Section 3.2.

• Some rules also have next token constraints (see Section 2.2.3.7).
An EBNF (extended Backus-Naur form) version of the grammar, produced by manual
simplification of the internal representation, is reproduced below. In addition to standard
EBNF notation, the grammar below contains a few instances of maximal matches (i.e.,
greedy matches as used in lexers and scannerless parsers), denoted by a subscript max,
three instances of character set differences, and one instance of a “taboo” constraint
on the next token. These extensions all map to next token constraints in the internal
representation.
Tokens: the set of 8-bit characters 0 . . . 255
Start category: TypeSheet
Productions:
##hchar → \x00 . . . \x09 | \x0B . . . \x0C | \x0E . . . \xFF
##char → ##hchar | \n
##letter → A . . . Z | a . . . z
##digit → 0 . . . 9
##blanks → ␣ ∗max
##eol → ##blanks \n+

max
##hascii → \x00 . . . \x09 | \x0B . . . \x0C | \x0E . . . \x7F
##utf8s2 → \xC0 . . . \xDF
##utf8s3 → \xE0 . . . \xEF
##utf8s4 → \xF0 . . . \xF7
##utf8cont → \x80 . . . \xBF
##line → ##hchar∗max
##id → ##letter (##letter |##digit)∗max
##digits → ##digit+

max
##foreignword → (##hchar \ :)+
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##outchar → ##char \ "
##litchar → ##hascii \ (!|#|&|␣)

| ##utf8s2 ##utf8cont
| ##utf8s3 ##utf8cont ##utf8cont
| ##utf8s4 ##utf8cont ##utf8cont ##utf8cont
| & ! | & # | & n | & b | & t | & c | & 0 . . . & 9

TypeSheet → Header [Targets] [StartCategory] EntryLink [##eol CommentLink] [##eol]
Header → Id ( Id , ##blanks Id ) : : [(##blanks | ##eol ##blanks) ImportLink] ##eol

CommentLink [TranslationLink]
Id → ##id
PosInt → ##digits
ForeignId → ##foreignword
ImportLink → Id [. Id [- > Id]] [, (##blanks | ##eol ##blanks) ImportLink]
TranslationLink → ##eol [CommentLink] : L A N G : ##blanks Id ##blanks \n

IdTranslationLink [TranslationLink]
IdTranslationLink → : : ForeignId : ##blanks Id ##blanks \n [IdTranslationLink]
CommentLink → Comment [CommentLink]
Comment → ##blanks ! ##blanks Line \n
Line → ##line
Targets → ##eol [CommentLink] : T A R G E T > ##blanks TargetLink
TargetLink → Target [##blanks TargetLink]
Target → FieldLink = VarLink (Comment | ##blanks \n)
FieldLink → Id [. FieldLink]
VarLink → # Id [␣ VarLink]
StartCategory → : S T A R T = Id (Comment | ##blanks \n)
EntryLink → (LitDef | CatDef ) [EntryLink]
LitDef → ##eol [CommentLink] : (CommentLink | ##blanks \n) LitLink
LitLink → LitProduction [LitLink]
LitProduction → ##blanks # Id > > ␣ # # Id = Substitution (CommentLink | ##blanks \n)

| ##blanks # Id > > ␣ # # Id = AlternativeLink (CommentLink | \n)
| ##blanks # Id > > ␣ # # Id = # [ CRangeLink ] (CommentLink | ##blanks \n)

Substitution → CharLink & " [OutCharLink] "
CRange → PosInt [- PosInt]
CRangeLink → CRange [, ##blanks CRangeLink]
Char → ##litchar
CharLink → Char [CharLink]
OutChar → ##outchar
OutCharLink → OutChar [OutCharLink]
Alternative → ElementLink
AlternativeLink → Alternative [& | AlternativeLink]
ElementLink → Element [ElementLink]
Element → CatVar [MatchCase] | LitVar [MatchCase] | Char [MatchCase] | LitId [MatchCase]

| Function [MatchCase] | Blanks | LineBreak
| & [ AlternativeLink & ] [MatchCase] | & ( AlternativeLink & ) [MatchCase]
| & { AlternativeLink & } [MatchCase] | & < AlternativeLink & > [MatchCase]
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Blanks → ␣ ##blanks, next token 6= !
LineBreak → & & \n
MatchCase → ##blanks Maximal | ##blanks Expect | ##blanks Taboo | ##blanks Except
Maximal → & +
Expect → & E Element
Taboo → & T Element
Except → & ^ Element
CatVar → # CatVarRec | # CatVarName | # CatVarId
CatVarRec → Id
CatVarName → > (Id | & t h i s)
CatVarId → = (Id | & t h i s)
LitVar → # # Id
LitId → & = & ( ElementLink & )
FunArg → ElementLink
FunArgLink → FunArg [& , FunArgLink]
Function → # ! Id ##blanks & ( [FunArgLink] & )
CatDef → ##eol [CommentLink] Id : [␣ Id +] \n [CommentLink] SpecLink [CatLink [IrrLink]]
SpecLink → Spec [SpecLink]
Spec → AllOfSpec | OneOfSpec | SomeOfSpec | OptionalSpec | FixedSpec | OnlySpec

| SomeOfTypeSpec | ItselfSpec | ArraySpec | IndexSpec | TemplateSpec | NothingElseSpec
| NothingSpec | UnionSpec | AtomicSpec | CompleteSpec

AllOfSpec → a l l O f > ##blanks EqLink
OneOfSpec → o n e O f > ##blanks EqLink
SomeOfSpec → s o m e O f > ##blanks EqLink
OptionalSpec → o p t i o n a l > ##blanks EqLink
FixedSpec → f i x e d > ##blanks EqLink
OnlySpec → o n l y > ##blanks EqLink
SomeOfTypeSpec → s o m e O f T y p e > ##blanks EqLink
ItselfSpec → i t s e l f > ##blanks NameLink
ArraySpec → a r r a y > ##blanks EqLink
IndexSpec → i n d e x > ##blanks EqLink
TemplateSpec → t e m p l a t e > ##blanks Id ##blanks \n
NothingElseSpec → n o t h i n g E l s e > ##blanks \n
NothingSpec → n o t h i n g > ##blanks \n
UnionSpec → u n i o n > ##blanks NameLink
AtomicSpec → a t o m i c > ##blanks NameLink
CompleteSpec → c o m p l e t e > ##blanks \n
EqLink → [# Id :] Id = Id (Comment | ##blanks \n) [##blanks EqLink]
NameLink → [# Id :] Id (, (␣ | ##eol ##blanks) NameLink | \n)
CatLink → CatProduction [CatLink]
CatProduction → ##blanks # Id > ␣

(AlternativeLink (CommentLink | \n) | # (␣ CommentLink | ##blanks \n))
IrrLink → IrrProduction [IrrLink]
IrrProduction → ##blanks # Id > > ␣ # Id = AlternativeLink (CommentLink | \n)

For practical reasons, Concise does not use TypeSheets.cnt directly. Instead, I converted



4.2. A GRAMMAR FOR CODE SHEETS 53

the grammar by hand to a C++ program, cnttoxml, using DynGenPar’s native C++
API. That cnttoxml program serves as a bootstrap parser for type sheets. It converts the
type sheets to the XML representation of a record sheet of the corresponding TypeSheets
type. The resulting XML record sheet is then converted to a Concise record sheet (.cnr
file) with another C++ program, xmltocnr. xmltocnr walks the XML using the QtXml
DOM (Document Object Model) API and produces the output in the Concise record
sheet format, including correct indentation. Next, the record sheet is imported. Finally, a
builtin converter inside Concise (written by Ferenc Domes) transforms the record of type
TypeSheets to an actual type system of type TypeSystem.
I initially wrote the xmltocnr converter for the TextDocument toolchain, a toolchain
for importing LATEX document structure, which will be the subject of Section 6.2. I
found XML to be an easier format to generate than the default record sheet format
(.cnr) because XML is not sensitive to things such as indentation. However, I only use
it as an intermediate format. The generated XML is entirely unreadable for humans
due to the lack of line breaks and indentation. A tool called HTML Tidy (Raggett
[76, 75], Desitter et al. [21], HTACG [37]) can make it human-readable, but still harder
to read than the .cnr format, and significantly larger than the .cnr (about 2 to 4 times).
Therefore, xmltocnr is used to obtain a .cnr file, which optimizes both readability and
compactness.
The cnttoxml bootstrap parser produces the same records as the parser automatically
generated from TypeSheets.cnt by the process from Section 3.2. This was verified using
TypeSheets.cnt itself as the test input.

4.2 A Grammar for Code Sheets

Another use of DynGenPar in Concise is for code sheets, the fundamental programming
language in Concise. Code sheets are the textual representation of elementary acts, the
basic operations on the semantic memory. This section first documents the elementary
acts, and then describes the grammar for code sheets and how it maps to the elementary
acts.

4.2.1 Elementary Acts

This section gives an overview of the internal representation for programs in Concise:
elementary acts. The execution environment for those elementary acts was written by
Ferenc Domes, the main author of Concise, and is therefore out of the scope of this thesis.
(Though, some improvements and bug fixes to that implementation were done by me as
part of the development of the grammar for code sheets.) However, the concepts of the
representation have to be explained to understand the concept of code sheets. That is
because code sheets directly map to that internal representation. I will therefore introduce
them briefly.
The programming model on Concise is based on programs stored inside the same seman-
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tic memory they operate on. For random access machines (i.e., the typical modern-day
computer), one would speak about a Von Neumann architecture, as opposed to a Har-
vard architecture with separate program and data memory. This architectural decision
was taken to allow straightforward reflection: Representing programs inside the semantic
memory ensures they can be statically analyzed by other programs.
The program representation in the semantic memory replicates the control flow graph.
The record representing an instruction is called an act. An act by itself just terminates
when it is done. Therefore, there exists a special Do act, which can be used to wrap
every act. The Do act carries an optional next entry which can point to another act,
typically another Do. This allows forming linked lists of acts to represent instruction
sequences. Thus, basic blocks (i.e., sequences of instructions one cannot jump out of nor
into) become linked lists in the semantic graph. The simplest type of loop is simply a
cycle in the semantic graph, chained through the entries for the next field of Do.

do do do

act act act

next next

next

do do do

However, in practice, this loop representation cannot currently be generated from a code
sheet. Instead, the cycle is completed in practice by a Goto act, which has a next pointer
inside the act itself.
The Do act can carry, in addition to the chain pointer next, a condition under which
the act should be executed, and an optional else act which is executed instead when
the condition does not hold. This can be used to implement conditional instructions.
Using another Do as the conditionally executed act, it can also represent conditional
blocks. Conditionalizing the Goto act this way provides a termination condition for loops.
Alternatively, a conditional Goto can also be used to jump out of a loop.
Finally, there are some constructs that influence the control flow beyond what is imme-
diately visible from the structure in the semantic graph: There is a special kind of loop
called ForAllFields, which loops over all fields a given object has at runtime, and repeats
the same subordinate act for each. Moreover, there exist, of course, function calls and
returns.
The set of acts currently implemented in Concise corresponds to the most basic operations
one needs to do in the semantic memory. They are therefore called the elementary acts.
In the future, it is planned to support a richer set of acts also containing some more
complex acts. Those complex acts would then be compiled into elementary acts before
execution.
There are 16 different command types defining the individual elementary acts. They are
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defined in ElementaryActs.cnt (Kofler & Neumaier [57]), from where the documen-
tation that follows is excerpted. They are:

1. Do: the standard control flow sequence, described above.

2. Return: return from a function call
Use: return
completes the current function act immediately, discarding the local frame and
popping the previous frame.

3. Goto: control flow
Use: goto x
does not continue with the next act but executes x

4. Assign: assigning a variable
Use: l=r
assigns to l.content the entry of r.content. l must be a variable.

5. Set: assigning an entry
Use: h.f =e
replaces the current entry in position (h, f) by e.

6. Get: sem manipulation
Use: e=h.f
assigns to e.content the entry in h.f.

7. GetType: get type
Use: x=getType(y)
gets the type of y as a string (more precisely, a value of type UniqueString) into x.

8. IsSubtypeOf: check of subtype relationship
Use: z=isSubtypeOf(x,y)
assigns true to z if x is a subtype of y, and false otherwise.

9. Identical: object and value comparison
Use: z=(x=y)
assigns true to z if x and y contain the same object, and false otherwise.

10. Convert: standard conversion
Use: y=convert(x,t)
converts x to type t and assigns the result to y.

11. Vcopy: copy external value
Use: x=Vcopy(y)
copies the external type and value of y to x

12. ForAllFields: loop over fields
Use: forAllFields f of x {

a
}

loops over all fields of x, repeating a for each of them. In every iteration, f contains
the object identifying the current field (not its entry).
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13. Call: function call
Use: call f with

in> listOfVariableSubstitutions
inout> listOfVariableAssignments
out> listOfVariableAssignments

end
calls the function f with the specified input (in), bidirectional (inout) and output
(out) arguments. Calling a function pushes the previous frame onto a function
stack, and creates a new local frame for the control of its execution.

14. Ask: ask the supervisor
Use: ask [q[, r ]]
reports an error the Concise way. The typical way to create errors is by testing
for some error condition in a conditional Do wrapped around this Ask. If the Ask
is executed, the supervisor is called and presented with the question object q and
possibly the answer object r.

15. Supervise: supervise the underlying act
Use: supervise [with timeout t] {

a
} [dialog [receive q [, r ]] {

d
}]

tries running a, and executes the dialog d if an error is caught or if the timeout t is
reached. The timeout is measured in a pseudotime counting the sum of weights of
individual elementary acts. The parameters q and r are passed from the Ask.

16. Resume: resume from supervisor
Use: resume
closes the current supervisor dialog and jumps back to the next task after the Ask.

(Kofler & Neumaier [57])

4.2.2 Code Sheets

For the Concise runtime environment for elementary acts, I provide a traditional text-
based programming language: Code sheets are the textual representation of the elemen-
tary acts. DynGenPar is used to parse that text form into records that can be executed
by the Concise runtime environment.
The code sheets are parsed using DynGenPar into a record of type CodeSheet. The
grammar used for that purpose is given by a Concise type sheet CodeSheets.cnt, repro-
duced in Kofler & Neumaier [57]. That type sheet is automatically converted to a
DynGenPar grammar using the grammar from Section 4.1 and the process from Section
3.2.
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A code sheet consists of three optional parts:
1. an introductory comment block, consisting of comment lines. Each comment line

must start with the ! character.
2. a Do block, and
3. one or more function definitions.

“Optional” means that some or all of the three sections can be missing. However, due to
technical limitations of the conversion process, all code sheets must currently have a root
block. If the Do block is present, it is the root block. Otherwise, the first defined function
is treated as the root. Any other function definitions are treated as subroutines of the
root block and expected to be called directly or indirectly by it.
A Do block is enclosed between curly braces. In front of the opening brace, there may
be an optional label followed by a colon. The label gives a name to the block, which is
especially useful for the root block. It is also used for the targets of goto statements.
Between the opening and the closing brace, there can be an arbitrary number of code
lines. Those code lines which produce elementary acts are chained together in a linked
list of Do records in the resulting record of elementary acts.
A function definition looks similar to a Do block, but the opening brace is preceded by a
function prototype like the following:

function ok of ExternalTypes::Boolean = ...
writeToFile(data of ExternalTypes::External, ...

fileName of ExternalTypes::String):
description> write a given external in a text file
static> lastFileWritten of ExternalTypes::UniqueString = str:""

(The MATLAB-style ... line continuations are part of the supported syntax.) The
prototype may itself be preceded by an optional comment block. It shall be noted that
the name of the function is the identifier after the = sign, in this case, writeToFile .
Before the = sign comes the list of output arguments with their name (e.g., ok ) and type.
The list of input arguments with their name and type comes between the parentheses.
A code line can be any of the following:

• a comment line (starting with !). Those are entirely ignored during processing. The
conversion process currently makes no attempt at filling in any comment fields in
the elementary acts.

• a blank line, also ignored entirely.
• a variable declaration. Such a declaration does not directly produce any output, but

it declares the meaning of a given identifier. Whenever that identifier is used in the
correct scope, it is recognized as a variable. Accordingly, in the resulting elementary
acts, a suitable variable record is created, and any subsequent use points to the same
record.

• an object reference. Like variable declarations, object references declare the meaning
of an identifier. In this case, the identifier is simply a shortcut for any object path
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in Concise format. In addition to being shorter, it allows referencing paths such
as Users(English,System).CurrentUser(English,System), which are not valid
identifiers.

• a type reference, declaring an identifier to be a shortcut for a full type reference.
This allows using a short name instead of the full typesheet::typename syntax.

• an act line, corresponding to any of the elementary acts listed in the previous section.
For Do, the syntax is the same as for the root Do block. For all other acts, the
syntax is specified in the previous section. These are the lines that actually produce
entries in the linked list of Do records. They can be followed by if and/or ifNot
conditions, followed by an optional else block (a Do block executed if the condition
is not satisfied). Those conditions are recorded in the resulting Do record for the
line.

In order to test the code sheet parser, I converted several existing test cases for elementary
acts from handwritten records to code sheets. Those test cases were originally created by
Ferenc Domes to test the runtime environment. I rewrote them into code sheet syntax
and verified that they produce a record equivalent to the original handwritten one. The
records produced are either entirely identical to the handwritten versions or have only
minor differences, such as a redundant Do wrapped around an act for technical reasons. I
also tested them in the runtime environment, confirming that they execute correctly.
As an example for the code sheet syntax, the first of the above test cases is reproduced
below:

! ActTest.cnc - act test
! code sheet converted from ActTest.cnr by Kevin Kofler
!
! ActTest.cnr is only a Do and not a Function.
actTest: {

! We need the string type more than once.
typeref> String = ExternalTypes::String
! These could also be comma-separated in one line, both versions are allowed.
global> cond of ExternalTypes::Boolean = bol:true
global> a of String = str:"1975"
global> b of ExternalTypes::MutableExternal = int:0
b = convert(a, ExternalTypes::Integer) if cond
system->alert(out=b)
out=time system->getTime()
! We can declare variables where needed.
global> c of ExternalTypes::MutableExternal = int:0
global> time of String = str:""
c = int:22
c = time
objref> testUser = testUser(English,System)
objref> Library = Library(English,System)
testUser.setTest = Library

}
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DynGenPar uses the above grammar to produce a record of type CodeSheet. This record
is then converted into elementary acts using a record transformation (see Section 4.3).
The resulting executable record can then be processed by the runtime environment in
Concise.
I considered several different options for the implementation language of that conversion
process. The original idea was to always perform this type of conversions in the elementary
acts language. However, it was not possible to use code sheets for this purpose before the
code sheet conversion was implemented, a chicken-and-egg problem. I also found it highly
impractical to attempt to write the converter directly in elementary act records. (After
all, this is why I was implementing code sheets in the first place.) Another possibility
would have been to hardcode the conversion inside the Java code of Concise as Ferenc
Domes did for the type sheets, but I did not find that to be a satisfactory approach
either. Therefore, I decided to try a third approach – using a language explicitly designed
for record conversions: XSLT (eXtensible Stylesheet Language Transformations)
(W3C [100]), on the XML representation of the record. The stylesheet reproduced in
Kofler & Neumaier [57] handles the conversion from the parser-level syntax record to
a record of executable elementary acts.
My experience with using XSLT for this purpose was mixed. Most of the conversion
process is just a matter of mapping input records to similarly structured output records.
XSLT excels at such straightforward remapping, making it convenient to implement in
XSLT. But unfortunately, converting from a syntax record to executable records also
requires some semantic analysis, and XSLT very quickly showed its limitations there. In
particular, I needed to resolve variable references. In the code sheet record, a variable
reference is encoded as a string giving the name of the variable. In the executable record,
the reference must point to the actual variable in the semantic memory. Therefore, the
converting style sheet needs to look up the correct variable to point to. Implementing
this resolution in XSLT required some very long and ugly XPath expressions.
Therefore, the conclusion was that the ideal implementation language for such a converter
would be very similar to XSLT, but would additionally provide some builtin support for
name resolution. This is what triggered the design of the record transformation language
(see Section 4.3). The record transformation sheet converting code sheets to elementary
acts is reproduced in Kofler & Neumaier [57].

4.3 A Grammar for Record Transformation Sheets

This section is based on the technical report Kofler [49].
The record transformation language transforms one record (labeled directed graph
with specified root node) into another. As explained in Section 3.3.3, this record trans-
formation functionality is fully integrated in the Concise GUI. A document in the record
transformation language is called a record transformation sheet.
The design concepts for the record transformation language are:

• record transformation sheets are essentially structured like XSLT (W3C [100]) style
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sheets, but
• with a more Concise (Schodl et al. [87], Domes [22]) like syntax, and
• most importantly, without the hacks! In particular:

– whereas the Concise XML record representation uses <FIELD name="field
name"><type name> nesting, in the record transformation language, a field is
really only one layer deep, and types are checked separately,

– setlabel (Section 4.3.7.3) and pointtolabel (Section 4.3.7.4), which avoid
the ugly XPath (W3C [99]) expressions for name resolution, along with
newscope (Section 4.3.6.4.3) to create a new label scope,

– a way to create new roots that can be attached through setlabel (Section
4.3.7.3) and pointtolabel (Section 4.3.7.4), so we do not have to figure out
where to emit objects pointed to from more than one place (see the new block
in Section 4.3.6.4.1).

4.3.1 Basics

Basic principle: The record transformation language transforms one record (labeled di-
rected graph with specified root node) into another. At any point in the process, there
are 2 current nodes: the current input node and the current output node. Initially, the
current input mode is the root node of the input record, the current output node is a
newly-created node that will become the root node of the output record. Some com-
mands of the form:
command>

nested context
<
affect the current input and/or output node. In that case, a different node is current
within the nested context, including anything called from it. After the <, we are back to
the input and output node that were current before the command.
Conceptually, the record transformation language is strongly inspired by XSLT (W3C
[100]), a language to transform between different XML representations. However, the
concepts were adapted to operate (directly) on Concise (Schodl et al. [87], Domes [22])
records instead, and the syntax matches the syntax of Concise record sheets.
Some general rules:

• By default, if multiple rules match, they are all applied, in the order in which they
appear in the record transformation sheet file. If only the first matching rule out
of a set of rules shall be applied, we use the > otherwise COND < construction.
The block following that is applied only for input nodes that did not match the pre-
ceding blocks in the otherwise chain, but do match the condition COND. Multiple
otherwise constructs form a chain in which the first block that matches is used
(like an else-if chain).

• In XSLT (W3C [100]), anything unmatched is just copied. For us, copying is
probably not a good default. Currently, anything unmatched is simply ignored.
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4.3.2 Document Structure

A record transformation sheet, i.e., a document in the record transformation language,
is structured as follows:

• It may start with an optional comment header, the only thing that can come be-
fore the header line. The comment header can contain only comment lines (Section
4.3.2.1) and blank lines.

• The sheet must be introduced by a header line (Section 4.3.2.2).
• What follows is a body composed of one or more contexts (Section 4.3.2.3). Com-

ment lines (Section 4.3.2.1) and blank lines are also allowed.

4.3.2.1 Comments

Comments start with a ! sign and optional blanks and end with a newline. In the semantic
memory, only the string in between is stored, without the leading blanks. Comment lines
can come at almost any place in the record transformation sheet.

4.3.2.2 Header Line

The header line in its simplest form is of the form:
source type system[ (language)] -> destination type system[ (language)]
e.g.:
CodeSheets -> ElementaryActs
which is the same as:
CodeSheets(English) -> ElementaryActs(English)
(English is the default.)
A record transformation sheet can also have parameters:
source type system[ (language)] -> destination type system[ (language)]>

variable name[ (type name)] [ = default value]
. . .

<
e.g.
RobustAmpl -> RobustOptProb>

rigorous(Boolean) = true
<
Each parameter line defines a parameter global to this instance of this record transfor-
mation sheet. It is treated as a global variable (Section 4.3.3). It should be set when
invoking the record transformation. A default value can optionally be specified.

4.3.2.3 Contexts

A context has the syntax:
[context name][ (type name)]>
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block contents
<

An empty context name symbolizes the root context: The root context is what is auto-
matically applied on the root node. Named contexts, on the other hand, must be explicitly
applied using the apply (Section 4.3.7.1) command.
An empty type name means no type checking is performed, i.e., the context accepts any
type (including untyped objects).
The block contents can be command blocks (Section 4.3.6), command lines (Section 4.3.7),
comment lines (Section 4.3.2.1), and/or blank lines.
As in Concise (Schodl et al. [87], Domes [22]) record sheets, multiple closing < characters
can be optionally collapsed into a single line, i.e., instead of, e.g.:

<
<
one can also write:
< <
(as in record sheets).

4.3.3 Variables

An important feature of the record transformation language is imperative variables. This
is unlike XSLT (W3C [100]), which intentionally omits this feature to allow implementa-
tions more flexibility in the evaluation order. With one exception (the otherwise block
to the pointtolabel command, Section 4.3.7.4), the record transformation language has
a very straightforward evaluation order, which allows using variables intuitively.
In the record transformation language, imperative variables are also the way to make
decisions which depend on the content of sibling nodes. In XSLT (W3C [100]), you
would use an XPath (W3C [99]) expression matching the sibling node (matching from
the root or using the .. path operator). This is not possible in the record transformation
language because parents and siblings are not a well-defined concept in the semantic
memory. So the way it is done is that one first has to match the sibling node on which the
decision should depend, and store the information that matters in one or more variable(s),
and only then match the node in which the decision should happen, and decide based on
the value of the variable(s). The variables are guaranteed to be set and read in that order.
Variables in the record transformation language are scoped:

• The outermost (global) scope contains the record transformation parameters (Sec-
tion 4.3.2.2).

• Each instance of a context (Section 4.3.2.3) opens its own variable scope.
All variables are per-instance. They are not remembered between separate runs of the
record transformation. Context variables are also not remembered from one invocation
of the context to the next, and each recursive invocation has its own independent copy of
the variable.
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Within any context, a variable (which will be local to this instance of that context) can
be declared using the var command (Section 4.3.7.5). Invoked contexts can refer to the
variable (scope inheritance), but if they define their own variable of the same name, it
takes precedence (shadowing).
Variables can be referenced in any expression, in some runtime identifiers (field names,
scope names, label names), and on the left hand side of an assignment (Section 4.3.7.6).
They are referenced using the # expression operator (Section 4.3.4). The variable that
is used is always the innermost variable in scope, i.e., the copy in the innermost scope
that contains the variable. Only if the scope has no variable of that name, the next outer
scope is looked up, etc., until the global scope.
A value can be assigned to a variable using the special := operator, which forms a com-
mand on its own (the assignment command, Section 4.3.7.6). The value is always assigned
to the innermost copy of the variable, as above.
To remember information from one sibling node to another (a common usage of variables,
as explained near the beginning of the section), the variable should be:

• declared in the parent node (using the var command, Section 4.3.7.5),
• assigned in the sibling that has the information (using the assignment command,

i.e., the := operator, Section 4.3.7.6), and
• read in the sibling that needs the information (using a variable reference, i.e., the

# operator, Section 4.3.4). The if (Section 4.3.6.2.1) or switch (Section 4.3.6.3)
conditionals may be of use to make the actual decision. The variable can also be
used, e.g., to fill in the value of a setexternal command (Section 4.3.7.8).

This is because the parent is the common scope between the two siblings.

4.3.4 Expressions

Several commands in record transformation sheets accept expressions that evaluate
to Concise (Schodl et al. [87], Domes [22]) externals. For those, a common
ExternalExpressions grammar is offered, which the record transformation language
extends with 3 application-specific atomic expression types.
The following types of atomic expressions are accepted by the ExternalExpressions
grammar:

• bracketed expressions: Any valid expression can be turned into an atomic ex-
pression by surrounding it with parentheses ‘(’ and ‘)’, bypassing the usual operator
priorities.

• constants:
– the boolean constants true and false,
– non-negative integer constants,
– non-negative (double-precision) floating-point constants (e.g., 1., .1,

1.1, 1e-1, 1.1e-1, etc.),
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– quoted string constants, which must be enclosed in double quotes ‘"’. The
escapes \\ (backslash), \" (quote) and \n (newline) are recognized.

Note that negative numeric constants are not treated as constants, but as the unary
minus operator applied to a non-negative constant. This is required to get operator
priorities right.

• type cast expressions: (type name) atomic expression

• function calls of a Concise (Schodl et al. [87], Domes [22]) external function or
a Concise function implemented in elementary acts inside the semantic memory

The record transformation language adds the following 3 atomic expression types:
• variable references: #variable name (maximally matched) or #{variable name}

(see Section 4.3.3).

• dollar references: $ or ${path match (Section 4.3.5.1)}
The dollar operator stands for a reference to the value of the current input node, or
its descendant with the given path, which should be of an external type (otherwise,
an error is triggered). If type matches are given in the path, the given types are
validated and an error thrown on mismatch. The type of the current node can
also be validated. $ with no path match and ${} with the empty path match are
syntactically different, but semantically the same.

• label existence checks (“have label”): The ?{scope::label} operator returns
true if and only if the label scope::label exists, i.e., was defined by a prior setlabel
command (Section 4.3.7.3), in the current scope for the scope name scope at the
time of evaluation. See pointtolabel (Section 4.3.7.4) for how label scopes are
resolved.
Warning: Unlike pointtolabel (Section 4.3.7.4), order of processing matters in
this case. If the label is encountered only after this operator is executed, it is too
late, and the operator will thus already have returned false. It can only return
true if the label is seen before this operator is executed.

The following operators are accepted by the ExternalExpressions grammar, in decreas-
ing priority order:

1. product operators: * (times), / (division), and % (modulo)

2. sum operators: + (plus), - (minus), unary - (unary minus)

3. comparison operators: == (=), ~= ( 6=), > (>), >= (≥), < (<), <= (≤)

4. unary boolean not: unary ~

5. boolean and: &

6. boolean or: |
If not otherwise specified, operators are binary and left-associative.
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4.3.5 Path and Path Set Matches

Several commands in the record transformation language need to match paths. In XSLT
(W3C [100]), XPath (W3C [99]) expressions are used for that purpose. The record
transformation language uses a similar concept, with the following main differences:

• The Concise (Schodl et al. [87], Domes [22]) type system (Schodl & Neumaier
[86]) is taken into account: At every step in the path, a type check can be performed.
The operator searching for a descendant node also takes a type and finds only nodes
of the requested type.

• Going up in the path, i.e., matching parent or sibling nodes, is not supported be-
cause parents and siblings are not a well-defined concept in the semantic memory.
Instead, use imperative variables (Section 4.3.3) to work with sibling nodes. If
what you are trying to do is name resolution, use the setlabel (Section 4.3.7.3)
and pointtolabel (Section 4.3.7.4) commands. The “have label” operator (Section
4.3.4) may also be of use for that use case.

• The syntax was adapted to match Concise (Schodl et al. [87], Domes [22]) syntax
conventions.

• Not all constructs of the XPath (W3C [99]) language have an equivalent.
Unlike XPath (W3C [99]), there are two versions of path matches:

• simple path matches (Section 4.3.5.1) with a restricted syntax that necessarily
resolves to at most one node (in particular, descendant matches are not allowed in
the path), and

• path set matches (Section 4.3.5.2) with an extended syntax (including descendant
matches and match conditions) that can produce sets of paths.

4.3.5.1 Path Matches

A path match matches the type of the current node: (type name) and/or a chain
of field matches (or neither, then it is the empty match, referring to the current input
node with no type checking). A field match .field name[ (type name)] is a field name
(an identifier preceded by the . operator) and an optional type name to match. The
field name can also contain dollar references or variable references (see Section 4.3.4),
which must be of a type convertible to String. Their value will be converted to a String
and concatenated into the name. Multiple field matches can be chained to a path, e.g.,
.exponent(UnaryMinus).term(BigInteger). All paths are relative to the current input
node.

4.3.5.2 Path Set Matches

A path set match is an extended version of a path match that can match entire sets of
paths. In addition to the constructs allowed in path matches (a match on the type of the
node and/or field matches), it also allows:
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• descendant matches ..(type name) match any descendant of the given type of a
node, where a descendant is defined as either the node itself, or one of its children,
or one of its children’s children, etc.

• optional match conditions on each field or descendant match:
– a [?path] condition requiring that a given subpath exists, or
– a [~?path] condition requiring that a given subpath does not exist,

where path can again be any path set match, or
– an [expression] condition that is satisfied if the expression evaluates to true,

when evaluating any dollar references (see Section 4.3.4) relatively to the node
being matched (rather than the surrounding current input node).

4.3.6 Command Blocks

Blocks are of a form similar to contexts:
introductory block command>

block contents
<

The block contents can again be command blocks (Section 4.3.6), command lines (Section
4.3.7), comment lines (Section 4.3.2.1), and/or blank lines.
As in Concise (Schodl et al. [87], Domes [22]) record sheets, multiple closing < characters
can be optionally collapsed into a single line, i.e., instead of, e.g.:

<
<
one can also write:
< <
(as in record sheets).

4.3.6.1 Matching and Enumerating Blocks

The following blocks can be chained in an otherwise chain:
[match condition]>

block contents
< otherwise [match condition]>

block contents
. . .
>
Only the contents of the first block that matches are executed.

4.3.6.1.1 Matching block. A matching block matches the type of the current
input node and/or of one of its descendants (with the specified path). The current output
node within the block is the matched node. Syntax:
path match (Section 4.3.5.1)>
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The matching block operates on a uniquely determined path. (In particular, ..(type
name) descendant matches are not allowed in the path.) To loop through a set of paths,
use foreach (Section 4.3.6.1.2). To merely check whether a set of paths is nonempty, use
ifexists (Section 4.3.6.2.2).
The otherwise block, if given, is executed if there was no match.

4.3.6.1.2 foreach block. A foreach block loops through all the nodes in a given
path set. The current output node within the block at each iteration is the matched node.
To merely check whether a set of paths is nonempty, without affecting the current output
node or looping, use ifexists (Section 4.3.6.2.2). Syntax:
foreach path set match (Section 4.3.5.2)>
Whitespace is required after foreach.
The otherwise block, if given, is executed if there was no match (i.e., if the set was
empty).

4.3.6.1.3 forallfields block. A forallfields block loops through all the fields
of the current output node, optionally restricted to fields where the field (not the entry)
has a given type. The current output node within the block at each iteration is the entry
corresponding to the matched field.
Syntax:
forallfields [ (type name)] [ #variable name]>
If a variable name is given, the field contents (not the entry contents) will be stored in
the variable at each iteration. This is only supported if the field type (not the entry
type) is external. Otherwise, an error is triggered. (You may want to restrict the loop to
a suitable external type to prevent that.)
The otherwise block, if given, is executed if there was no match.

4.3.6.2 Conditional (if-else) Blocks

The following blocks can be chained in an else chain:
if[ exists] condition>

block contents
[ < else[ ]if[ exists] condition>

block contents]
. . .
[ < else >

block contents]
>
Only the contents of the first block that matches are executed.
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4.3.6.2.1 if block. An if block checks a condition. Syntax:
if condition (expression, Section 4.3.4)>
Whitespace is required after if except for the sequence if(.

4.3.6.2.2 ifexists block. An ifexists block checks whether a given path set is
nonempty, i.e., whether one or more nodes with the given path exist. Syntax:
ifexists path set match (Section 4.3.5.2)>
Whitespace is required after ifexists.
Unlike the matching (Section 4.3.6.1.1) or foreach (Section 4.3.6.1.2) block, this does
not change the current output node within the block. Use foreach to operate on the
nodes in the set.

4.3.6.3 Switch Blocks

A switch block makes a case distinction. It is basically syntactic sugar for an if-else
chain, though there is also a minor performance advantage because the common expression
is evaluated only once.
Syntax:
switch expression>

[ case expression>
block contents

>]
. . .
[ default>

block contents
>]

>
Whitespace is required after switch except for the sequence switch( and after case
except for the sequence case(.

4.3.6.4 Constructor Blocks

4.3.6.4.1 new block. A new block creates a new node that is not attached to the
current output node, and makes that the current output node within the block. Syntax:
new [type name]>
This is normally used together with setlabel (Section 4.3.7.3), so it can be attached at
a different point of the record using pointtolabel (Section 4.3.7.4).

4.3.6.4.2 newfield block. A newfield block creates a field with the given field
name pointing to a new entry node in the current output node, optionally sets the entry
node’s type, and makes it the current output node within the block. Syntax:
newfield field name[ (type name)]>
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Alternatively, instead of specifying a field name, it is possible to construct a new object
(or an external, using setexternal (Section 4.3.7.8)) which will become the field using
the following alternate syntax:
newfield>

[block contents for field contents]
< = [ (type name)]>
Specifying the type name is syntactic sugar for settype (Section 4.3.7.2), i.e.:
newfield fieldName(typeName)>
is equivalent to:
newfield fieldName>
settype typeName

4.3.6.4.3 newscope block. A newscope block creates a new label scope, valid within
the block (see also the pointtolabel line, Section 4.3.7.4). Syntax:
newscope scope name>
The scope name can also contain dollar references or variable references (see Section 4.3.4),
which must be of a type convertible to String. Their value will be converted to a String
and concatenated into the name.

4.3.6.4.4 newlist block. A newlist block builds a list of type type name at the
given field name (or if field name is omitted, at the current output node; in particular,
this allows building lists in the root node of the output record). Syntax:
newlist [field name](type name)[ .next name]>
The block may optionally be followed by an < otherwise > block (with no arguments).
The list is initially empty, which means field name does not initially point to anything
(or if field name is omitted, the current output node is initially not modified). Therefore,
this command does not by itself change the current output node. Use an append block
(Section 4.3.6.4.5) to actually create the list (by appending the first element). The next
name is the name that should be given to the next chaining field in the list. If not
specified, it defaults to next.
The optional otherwise block is used if nothing was appended to the linked list using
append. In that case, the field will not have been created. (If no otherwise block is
given, nothing happens. If you want an error to be raised for an empty list, use the error
command (Section 4.3.7.10) in the otherwise block.)

4.3.6.4.5 append block. An append block appends an entry to the list in the inner-
most newlist block (Section 4.3.6.4.4). Syntax:
append [field name[ (type name)]]>
When used without an argument, only the linked list node is created and becomes the
current output node within the block. Passing an argument is a shortcut to create a data
node (as used in many linked lists), i.e.:
append fieldName(typeName)>
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is equivalent to:
append>
newfield fieldName(typeName)>

The type name can be omitted, in which case the type will not be set, as for the newfield
block (Section 4.3.6.4.2). Therefore, the above examples are also equivalent to:
append fieldName>

settype typeName
and:
append fieldName>
newfield fieldName>
settype typeName

(See Section 4.3.7.2 for settype.)

4.3.7 Command Lines

4.3.7.1 apply Line

The apply line applies the context with the given context name, or the root context if
no name is given. Syntax:
apply context name

4.3.7.2 settype Line

The settype line sets the type of the current output node. Syntax:
settype type name

4.3.7.3 setlabel Line

The setlabel line gives a label to the current output node, which can be referenced by
pointtolabel (Section 4.3.7.4). Syntax:
setlabel scope::label
Both the scope name and the label name can also contain dollar references or variable
references (see Section 4.3.4), which must be of a type convertible to String. Their value
will be converted to a String and concatenated into the name.
See pointtolabel (Section 4.3.7.4) for how label scopes are resolved.

4.3.7.4 pointtolabel Line

The pointtolabel line points to a setlabel (Section 4.3.7.3) label, even if the label is
encountered only later. Syntax:
pointtolabel scope::label
The line may optionally be followed by an otherwise > block (with no arguments).



4.3. A GRAMMAR FOR RECORD TRANSFORMATION SHEETS 71

Both the scope name and the label name can also contain dollar references or variable
references (see Section 4.3.4), which must be of a type convertible to String. Their value
will be converted to a String and concatenated into the name.
The label resolution works as follows: When looking for the label foo::bar, we look first
for a setlabel foo::bar inside the innermost newscope foo>, then in the next outer
scope etc., then finally outside of any newscope foo>, i.e., in the global foo scope. Any
labels with another context scope, e.g., bla::bar, are ignored entirely.
The optional otherwise block is used if no label with the given name can be found in the
appropriate scope. (If no otherwise block is given, an error is raised in that case.) Please
note that label resolution may be done in a later phase, and thus any object created in the
otherwise block can be created and later discarded by the implementation. Therefore,
the otherwise block must not trigger errors even if the label exists, and the effects
of using setlabel (Section 4.3.7.3) inside the otherwise block of pointtolabel are
undefined.

4.3.7.5 var Line

The var line defines a variable local to this instance of the current context. Invoked
contexts can refer to the variable (scope inheritance), but if they define their own variable
of the same name, it takes precedence (shadowing). Syntax:
var variable name[ (type name)]
See Section 4.3.3 for more information about variables.

4.3.7.6 Assignment Line

The := operator assigns a value to a variable. Syntax:
variable reference (Section 4.3.4) := value (expression, Section 4.3.4)
See Section 4.3.3 for more information about variables.

4.3.7.7 Function Call Line

One way to call functions is on the right hand side of an assignment (Section 4.3.7.6).
However, some functions do not return a value, or you are not interested in the return
value. Therefore, it is also possible as a special case to call functions only for their side
effects, by putting the function call (Section 4.3.4) on its own line, as a statement by
itself.

4.3.7.8 setexternal Line

The setexternal line replaces the current output node with an external object of the
type and value of the given expression. Use a type cast expression (Section 4.3.4) to force
a specific type. Syntax:
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setexternal value (expression, Section 4.3.4)
Whitespace is required after setexternal except for the sequence setexternal(.

4.3.7.9 setname Line

The setname line sets the name of the current output node to the value of the expression
name. The result will be converted to a string. It can be in any of the Concise (Schodl
et al. [87], Domes [22]) name formats, e.g., Foo, Foo(English,System), etc. Syntax:
setname name (expression, Section 4.3.4)
Whitespace is required after setname except for the sequence setname(.

4.3.7.10 error Line

The error line throws an exception with an implementation-defined message containing
the value of the expression message (which will be converted to a string). Syntax:
error message (expression, Section 4.3.4)
Whitespace is required after error except for the sequence error(.

4.3.7.11 warning Line

The warning line displays an implementation-defined message containing the value of
the expression message (which will be converted to a string). The way the message is
displayed (stderr, stdout, dialog box, etc.) is also implementation-defined. Syntax:
warning message (expression, Section 4.3.4)
Whitespace is required after warning except for the sequence warning(.

4.4 A Grammar for Chemical Process Modeling

Another formal language DynGenPar has been applied to is a modeling language for
chemical processes. The idea came from Ali Baharev and Arnold Neumaier, who had
been working on optimization techniques for chemical process simulation. (Baharev &
Neumaier [7]) They had attempted using Modelica (Mattsson et al. [64], Model-
ica Association [68]) to model the chemical processes. (Baharev & Neumaier [6])
Unfortunately, neither the syntax nor the available implementations of Modelica proved
satisfactory. The syntax did not allow to conveniently express chemical processes. As for
the implementations, the primary issues with them were performance and bugs. There-
fore, I was tasked with designing a specialized modeling language for chemical processes.
Together with Ali Baharev and Arnold Neumaier, I designed a modeling language in
which such chemical processes can be expressed conveniently. I called the language
ChemProcMod, short for “Chemical Process Modeling”. The main objective was to
make the syntax intuitive for a chemical engineer. Ali Baharev’s input proved invalu-
able for that, due to his chemical engineering background. I implemented the grammar
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as a Concise type sheet, parsed using DynGenPar. The type sheet ChemProcMod.cnt is
reproduced in Kofler & Baharev [51].
The syntax was designed to follow the conception of the engineer rather than of a math-
ematician or computer scientist. As a result, it is declarative rather than imperative, and
it uses vocabulary from the chemical application, not from the mathematical model or
from object-oriented programming. For example, where Modelica would speak of a class,
we instead call the class by what it actually is, e.g., an atomic unit, a composite unit,
etc.
The syntax is line- and block-oriented. A file can consist of several elements, some of
which are line elements, e.g.:

• comments, introduced by a % sign, or

• import: statements, e.g.
import: UnitLibrary (C = C, VLE := custom VLE, enthalpy := enthalpy),

whereas many are block elements, introduced by a line like
atomic unit: heat exchanger {
ending with an opening brace, and terminated with a closing brace }.
Blocks themselves consist of a list of elements between the opening and the closing brace.
Those elements can also be lines or (nested) blocks. Some elements, such as parameter
or variable definitions, are allowed everywhere; others can occur only in specific contexts.
For example, the following elements can only occur at the top level of the file, not within
another block:

• import: lines, which import the contents of another file,

• stream blocks, which declare the defining variables of every stream flowing in the
model,

• model blocks, which define reusable sets of equations that are independent of any
unit, typically thought of as model equations by the engineers,

• atomic unit blocks, which define an atomic unit, a building block from which
more complex units can be composed,

• composite unit blocks, which define a composite unit, built from atomic units
or other composite units,

• flexible unit blocks, which specify a list of possible unit types from which one
can be picked, like a union in the C programming language, and

• process blocks, which define a process, a self-contained unit that can be simulated
on its own. They can be thought of as the main class in a programming language.

On the other hand, many elements are only allowed within specific types of blocks. For
example, inlets and outlets are ports through which matter enters resp. exits a unit.
They only make sense within a unit. Therefore, inlets: and outlets: lines are only
allowed within atomic unit, composite unit and flexible unit blocks.
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The example below (Kofler & Baharev [51]) specifies a divider, an atomic unit that
divides a stream into two streams such that the first is ζ (zeta) times as strong as the
second, in the ChemProcMod language:

atomic unit: divider {
inlets: i
outlets: o1, o2

variable: zeta .. real number

equations {
o1.f = zeta * o2.f
o1.H = zeta * o2.H

}
}

The modeling language comes with a unit library (UnitLibrary.cpm), consisting mostly
of atomic units. It is reproduced in Kofler & Baharev [51]. The example unit above
comes from that UnitLibrary.cpm file. The unit library evolved from Ali Baharev’s unit
library (Baharev & Neumaier [6]) in Modelica. I converted it to ChemProcMod, and
we made some iterative refinements to it together. The concept of ChemProcMod is to
hierarchically build more complex units using those atomic units as building blocks. A
few such composite units are included in the unit library as well.
Ali Baharev and I also implemented two example problems in the language, reproduced
in Kofler & Baharev [51]:

• JacobsenTest.cpm, the first practical test case for both the ChemProcMod language
and the parser. This is an example for multiple steady-states in ideal two-product
distillation from Jacobsen & Skogestad [42]. The model equations are taken
from Baharev et al. [5].

• A parametrized problem consisting of the two files RD.cpm and RD_params.cpm.
This example gives the steady state model of a reactive distillation column for
ethylene glycol synthesis, taken from Ciric & Miao [15]. The column corresponds
to the cost-optimal column of Ciric & Gu [14]. In the column, ethylene glycol is
produced from ethylene oxide and water.

In addition, I wrote a ParserTest.cpm test file that has as its only purpose to test
language features that do not appear in the unit library nor in the example problems, in
order to ensure that the parser processes them correctly. That test file has no pretense
of making any sense from a chemical engineering point of view, it only serves to test the
parser. It is reproduced in Kofler & Baharev [51].
The above set of test files, namely, the unit library, the example problems, and the parser
test, ensure the quality of the ChemProcMod grammar.
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4.5 An Extensible Grammar for Optimization
Problems

An additional application of DynGenPar based on a formal language came out of the
COCONUT (Schichl [82], Neumaier & Schichl [71]) project. It showcases the dy-
namic extensibility of DynGenPar. COCONUT (COntinuous CONstraints – Updating
the Technology) is a framework for solving global optimization and continuous constraint
satisfaction problems. In COCONUT, there is a need for an input format that is exten-
sible for new language features. For example, a recent research project involves solving
optimization problems on Lie groups with COCONUT; for that project, the language
would be extended with Lie groups and related operators. Hermann Schichl, the main-
tainer of COCONUT, realized that the dynamic properties of DynGenPar are perfectly
suited for this problem.
Therefore, I implemented a DynGenPar grammar for optimization problems, called
OptProbl. The input format for the optimization problems is a subset of LATEX. The
main feature of the grammar is that, as in LATEX, the \newcommand command can be
used to define new commands. E.g., \newcommand{frac}[2]{} defines a new frac
operation with two parameters. (It is also possible to give a replacement expression
between the braces, e.g., to automatically replace a fraction with a division. But that
substitution is performed only after parsing.) What makes the feature special is that
every such new command is actually a new pair of rules, added to the grammar at
runtime. This feature is where the dynamic extensibility of DynGenPar is put to use.
Future versions can easily add additional forms of extensibility: The current
implementation only allows defining \newcommand-style commands. In the future, the
user could be allowed to define, e.g., binary operators such as \times in a similar way.
The implementation would follow the same approach.
An important restriction is that the expressions in the LATEX markup must be given
in an unambiguous syntax known from programming languages. For instance, implied
multiplication (e.g., 2x) is not supported, the ∗ operator must be used (e.g., 2 ∗ x). That
is the reason why this grammar is classified as a formal language. A grammar that accepts
natural LATEX with its inherent ambiguities will be presented in Section 6.5.
The implementation is written in C++, using the DynGenPar API (application program-
ming interface) directly. The initial grammar rules are given as C++ code compiled
directly into the parser. User-defined rules can be added at runtime through constructs
that are part of the recognized OptProbl input language. The choice of C++ as the im-
plementation language was made in order to allow easy integration into the COCONUT
project, which is also written in C++. Therefore, the OptProbl application is not based
on the Concise framework.
A BNF (Backus-Naur form) version of the grammar, manually converted from the C++
source file optprobl.cpp, is reproduced below. The grammar is almost context-free, but
it contains one single instance of a non-context-free extension to the BNF notation. The
extension handles the peculiar way LATEX treats the end of a tag. The tag ends at the
first non-alphanumeric character. But if that character is a space, the space is consumed.
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This is implemented in the grammar as a “taboo” constraint on the next token in the
definition of the TagEnd category. In addition, the rules for NewCommand trigger a parse
action that extends the grammar. This is marked in the grammar with the ‘¤’ symbol.
The parse action is described below, after the BNF.
Tokens: the set of 8-bit characters 0 . . . 255
Start category: OptProbl
Productions:
Whitespace → ε | Whitespace Whitespace1
Whitespace1 → ␣ | \ \ | \n
Letter → A . . . Z | a . . . z
Digit → 0 . . . 9
WordChar → Letter | Digit
WordChars → WordChar | WordChar WordChars
TagEndTaboo → WordChar | ␣
TagEnd → ε [next token 9 TagEndTaboo] | ␣
BracketedExpr → ( Whitespace Expr Whitespace )
Var → Letter | \ l a m b d a TagEnd
NumChar → Digit | .
NumChars → NumChar | NumChar NumChars
PosNum → NumChars | NumChars e NumChars | NumChars e - NumChars
NegNum → - Whitespace PosNum
Num → PosNum | NegNum
Interval → [ Whitespace Num Whitespace , Whitespace Num Whitespace ]
Placeholder → # Digit
AtomicExpr → BracketedExpr | Var | PosNum | Interval | Placeholder
CaretExpr → PowerExpr Whitespace ^ { Whitespace Expr Whitespace }
PowerExpr → AtomicExpr | CaretExpr
TimesExpr → ProductExpr Whitespace * Whitespace PowerExpr
DivExpr → ProductExpr Whitespace / Whitespace PowerExpr
ProductExpr → PowerExpr | TimesExpr | DivExpr
PlusExpr → Expr Whitespace + Whitespace ProductExpr
MinusExpr → Expr Whitespace - Whitespace ProductExpr
UnaryMinusExpr → - Whitespace ProductExpr
Expr → ProductExpr | PlusExpr | MinusExpr | UnaryMinusExpr
Min → \ m i n TagEnd
Max → \ m a x TagEnd
Goal → Min | Max
Objective → Goal Whitespace Expr
Set → Interval
Eq → =
Gt → >
Lt → <
Geq → \ g e q TagEnd
Leq → \ l e q TagEnd
Neq → \ n e q TagEnd
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Relation → Eq | Gt | Lt | Geq | Leq | Neq
NewCommand → \ n e w c o m m a n d { WordChars } [ Digit ] { } ¤

| \ n e w c o m m a n d { WordChars } [ Digit ] { Whitespace Expr Whitespace } ¤
NewCommands → ε | NewCommand Whitespace NewCommands
Constraint → Expr Whitespace \ i n TagEnd Whitespace Set

| Expr Whitespace Relation Whitespace Expr
Constraints → Constraint | Constraints Whitespace , Whitespace Constraint
OptProbl → Whitespace NewCommands Objective Whitespace

| Whitespace NewCommands Objective Whitespace
\ s t TagEnd Whitespace Constraints Whitespace

The two rules marked with the ‘¤’ symbol trigger a parse action called NewCommandAc-
tion. The action extends the grammar with two new rules, which are then recognized by
DynGenPar in any text that follows. When executing the action, DynGenPar passes it
the parse tree that was matched by the rule. Out of the final parse tree, this is the subtree
with, as root, the left hand side of the rule. In this case, the root is NewCommand. The
NewCommandAction starts by collecting the leaves (i.e., the tokens) below the children
of type WordChars and Digit. The WordChars correspond to the name of the new com-
mand, the Digit to its number of arguments numArgs. Next, the NewCommandAction
builds a rule that recognizes the command. If numArgs 6= 0, the rule is

Command_name→ \ name ({ Whitespace Expr Whitespace })numArgs,

where (. . .)numArgs denotes repetition, i.e., the braces and their contents are repeated
numArgs times. If numArgs = 0, the rule is

Command_name→ \ name TagEnd.

The second rule built by NewCommandAction is of the form

AtomicExpr → Command_name.

That rule actually adds the new command to the grammar, making it an atomic expres-
sion. (Of course, all the other possible expansions for AtomicExpr remain valid.)
There are two different rules for NewCommand, which both trigger the NewCommandAc-
tion. The difference is that the second form takes an expression Expr within the braces,
whereas the first form does not. That expression is not used during the parse process it-
self. However, after parsing, the OptProbl application substitutes the command with the
given expression. Any placeholders (Placeholder category) in the expression are replaced
with the corresponding command argument. For example, given the command definition
\newcommand{frac}[2]{(#1)/(#2)}, any use of \frac{2}{3} is automatically converted
to (2)/(3). It shall be noted that, unlike in LATEX, the type of substitution done is not
a text substitution, but a parse tree substitution. This means that, if we define \frac
as only #1/#2 (without the parentheses), OptProbl will give different results from LATEX.
E.g., for \frac{1}{1+1}, OptProbl will still respect the priorities and treat it as 1/(1+1),
whereas LATEX will expand it to just 1/1+1, which is 2, not 1

2 . If the expression Expr is
omitted in the NewCommand, e.g., \newcommand{frac}[2]{}, the new command is not
substituted at all. Instead, it is kept in the final syntax tree as a custom type of node,
e.g.,
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Command_frac

PosNum 2.PosNum 1

After completing the parsing, the OptProbl application simplifies the parse tree to an
abstract syntax tree. The simplification step traverses the parse tree recursively and does
the following transformations:

• For the Var and PosNum categories, the subtrees are removed. Instead, all the
leaves (i.e., the character tokens) are collected into a string. The resulting string is
attached directly to the Var resp. PosNum node as its value.

• The same is done for the Placeholder category, except that there, the value is stored
as an integer rather than a string.

• Nodes of type Expr, PowerExpr, ProductExpr, AtomicExpr, Num, and Bracketed-
Expr are removed. Those categories are only needed during parsing and do not
carry a semantic meaning. In the syntax tree, those nodes are replaced by their
single child, or, in the case of BracketedExpr, the second child (i.e., the one that is
not a parenthesis token).

• For all categories other than Letter, Digit and NumChar, any of their children that
are tokens are completely removed, as the semantics of those tokens are already
given by the category. E.g., NegNum and UnaryMinusExpr already specify that the
number or expression is being negated, so the minus sign token is not needed.

• For the same reason, nodes of type Whitespace, Whitespace1, TagEnd, and
TagEndTaboo, and their entire attached subtrees, are completely removed.

• The same is done to nodes of type NewCommands and NewCommand, because the
command definition does not have any semantic meaning for the final syntax tree.
Those categories only serve to trigger the NewCommandAction, which adds rules to
the grammar during parsing.

• The substitution of user-defined commands described in the previous paragraph is
made.

• Any other nodes encountered in the parse tree are copied into the abstract syntax
tree.

Finally, the OptProbl application exports the abstract syntax tree into the .dag file
format used by COCONUT to represent optimization problems. The .dag format is a
textual serialization of COCONUT’s internal representation. As indicated by the name,
the format represents optimization problems as directed acyclic graphs (DAGs). Basically,
every line in the .dag file defines a node or an edge of the DAG. The abstract syntax
trees produced by the OptProbl parser can be converted into such COCONUT DAGs in
a straightforward way, which is implemented in the OptProbl application.
As an example, consider the following optimization problem:

min 1
2x

2

s.t. x ∈ [−1, 1].
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(The problem is kept very simple to be able to show the full parse tree.)
In the OptProbl language, this problem can be specified as follows:

\newcommand{frac}[2]{(#1)/(#2)}
\min \frac{1}{2}*x^{2}\\
\st x \in [-1,1]

For the above example, the OptProbl grammar produces the following parse tree:

OptProbl

Whitespace

Whitespace1

\n,

Whitespace

ConstraintsWhitespaceTagEnd

␣

ts\Whitespace

Whitespace1

\n

Whitespace

Whitespace1

\\

Whitespace

ObjectiveNewCommandsWhitespace

with the subtrees:

NewCommands

NewCommands,Whitespace

Whitespace1

\n

Whitespace

NewCommand

NewCommand

},WhitespaceExpr

ProductExpr

DivExpr

PowerExpr

AtomicExpr

BracketedExpr

)WhitespaceExpr

ProductExpr

PowerExpr

AtomicExpr

Placeholder

Digit

2

#

Whitespace(

Whitespace/WhitespaceProductExpr

PowerExpr

AtomicExpr

BracketedExpr

)WhitespaceExpr

ProductExpr

PowerExpr

AtomicExpr

Placeholder

Digit

1

#

Whitespace(

Whitespace{]Digit

2

[}WordChars

WordChar

WordChars

WordChar

WordChars

WordChar

WordChars

WordChar

Letter

c

Letter

a

Letter

r

Letter

f

{dnammocwen\
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Objective

Expr

ProductExpr

TimesExpr

PowerExpr

CaretExpr

},WhitespaceExpr

ProductExpr

PowerExpr

AtomicExpr

PosNum

NumChars

NumChar

Digit

2

Whitespace{^WhitespacePowerExpr

AtomicExpr

Var

Letter

x

Whitespace*WhitespaceProductExpr

PowerExpr

AtomicExpr

Command_frac

}WhitespaceExpr

ProductExpr

PowerExpr

AtomicExpr

PosNum

NumChars

NumChar

Digit

2

Whitespace{}WhitespaceExpr

ProductExpr

PowerExpr

AtomicExpr

PosNum

NumChars

NumChar

Digit

1

Whitespace{carf\

WhitespaceGoal

Min

TagEnd

␣

nim\

and

Constraints

Constraint

Set

Interval

].WhitespaceNum

PosNum

NumChars

NumChar

Digit

1

Whitespace,WhitespaceNum

NegNum

PosNum

NumChars

NumChar

Digit

1

Whitespace-

Whitespace[

WhitespaceTagEnd

␣

ni\Whitespace

Whitespace1

␣

Whitespace

Expr

ProductExpr

PowerExpr

AtomicExpr

Var

Letter

x

The tree is then simplified into the following syntax tree:
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OptProbl

Constraints

Constraint

Set

Interval

PosNum 1.NegNum

PosNum 1

Var x

Objective

TimesExpr

CaretExpr

PosNum 2Var x

DivExpr

PosNum 2PosNum 1

Goal

Min

Notice how the NewCommands subtree is completely gone, as are theWhitespace ones and
the syntactic tokens. Also notice how the Command_frac was replaced by its definition.
Finally, note the simplified expressions.
Finally, the OptProbl parser outputs a .dag text file representing the following CO-
CONUT DAG:

min
∗

/

1
99

ˆ
1

ii

1

1

DD

2
1

ZZ

x
∈ [−1, 1]

1

<<

2.
1

[[

The edge labels, which are all 1 in this case, are linear multipliers. It is a special feature
of COCONUT DAGs that every edge carries such a multiplier. This is used to represent
subtractions (as a + node with multipliers 1 and −1) or any other linear combinations.
It could also be used to represent the factor 1

2 in this example, but the OptProbl applica-
tion leaves this kind of representational optimizations to the COCONUT simplifier. The
COCONUT simplifier simplifies the above DAG into the equivalent:

min
ˆ2

x
∈ [−1, 1].

1

OO
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4.6 A Grammar for Robust AMPL

This section discusses a DynGenPar grammar for a subset of theAMPL (A Mathemat-
ical Programming Language) (Fourer et al. [27], AMPL Optimization inc. [2])
modeling language for optimization problems. The language was additionally extended to
allow intervals wherever AMPL normally expects a number, and the implementation sup-
ports reading decimal numbers with outwards rounding, thus we call it robust AMPL.
The goal is to be as compatible as possible with the official implementation (Fourer
et al. [27], AMPL Optimization inc. [2]) of AMPL. Therefore, the accepted subset of
the AMPL language is growing over time.
The parser grammar for robust AMPL is implemented as a Concise type sheet
RobustAmpl.cnt, written by me. The type system described in it is a parser-oriented
representation: variables are represented by their names as strings, numbers are
represented as arbitrary-precision BigDecimal and BigInteger types. The semantic
analysis resolving the variable references and the rounding of the decimals to either
floating-point intervals or simply rounded floating-point numbers (depending on the
needs of the application) are done by a later record transformation step. Operations in
this representation are just elementary operations corresponding to what is written in
the input, e.g., a power is just the operation x^y (i.e., xy), independently of whether x
and/or y are constant, integer, etc., and any additional coefficients are represented
separately. Calls to well-known functions such as sin are represented as a generic
CallExpression, with the function name as a string. My version of the type sheet can
currently parse the AMPL version of the library Lib1 of the COCONUT benchmark
(Shcherbina et al. [89], Neumaier & Schichl [72]) that was automatically written
by the GAMS Convert (see the section CONVERT in McCarl et al. [65]) utility.
Handwritten AMPL input, as in the libraries Lib2 and Lib3 of the COCONUT
benchmark, poses additional challenges: On one hand, the grammar tries to retain
comments in the parsed record, and thus the more liberal use of comments and
whitespace in handwritten code can confuse it. On the other hand, handwritten code
also makes use of AMPL features such as vectors and matrices that are flattened away
in the automatically-generated code in Lib1. The grammar additions for handwritten
AMPL are now being worked on by David Langer, but his work is not yet integrated
into our system. (In particular, the record transformation described below does not yet
support it.)
Internally, the parsed optimization problems are represented in a different type system,
given by the type sheet RobustOptProb.cnt. That type sheet was originally written by
Ferenc Domes. I adapted it to work together with the AMPL grammar. The
RobustOptProb representation is more semantic and solver-oriented. Variable references
are represented by a direct pointer to the semantic memory object for the variable.
Numbers are represented as machine types (Integer, Double, RealInterval,
RealIntervalUnion). Operations in this representation are called nodes, because they
correspond to nodes in a directed acyclic graph (DAG). The representation of the nodes
is optimized for solving, e.g., there are different node types for integer powers, constant
noninteger powers, and general powers, and optional coefficients are allowed within a
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node, e.g., integer powers can be as general as (ax + b)n + c. Calls to well-known
functions such as sin are represented as dedicated nodes for each function, e.g.,
SinNode. There is also a distinction between nodes operating on constants (that can be
evaluated beforehand) and nodes operating on variables (that have to be passed to the
solver). With a few exceptions, the available nodes correspond to the ones used in the
Java version of Ferenc Domes’s GloptLab (Domes [24, 23]). The type sheet contains
output usages that produce AMPL output parsable as RobustAmpl, but those usages
cannot themselves be used for parsing. This is due to several technical limitations: The
parser cannot produce direct pointers to variables, it sees multiple instances of the name
and thus produces multiple string objects. In addition, the distinction between named
constant coefficients and variables is context-dependent. There are also other
ambiguities in the rules. Therefore, I created the RobustAmpl.cnt type sheet as a
parsable version of RobustOptProb.cnt. The conversion from the parser-oriented
representation (RobustAmpl) to the solver-oriented representation (RobustOptProb) is
then done by a record transformation.
The record transformation sheet RobustAmpl.cnrt (written by me) transforms a record
in the type system RobustAmpl (as produced by DynGenPar) to a record in the type
system RobustOptProb (suitable to be passed to a solver). The record transformation
does several semantic analysis steps that the parser is unable to do:

• Variable names are resolved. The references are pointed to the actual variable object
rather than a copy of the name.

• Constants are converted to the appropriate machine type: BigInteger constants
that fit into the fixed-size Integer machine type are converted to that type. How
BigDecimal constants (and large BigInteger constants) are handled depends on
the boolean flag rigorous: If rigorous conversion is desired, they are converted
to the RealInterval type using outwards rounding. Otherwise, they are simply
rounded to the Double type.

• For arithmetic operations, the record transformation determines whether they op-
erate on at least one variable or only on constants, and uses the corresponding
operation nodes in the RobustOptProb type sheet accordingly.

• Well-known function names such as sin are also recognized and converted to the
appropriate operation nodes.

Since the RobustOptProb type system uses more general operations than the basic arith-
metic used by RobustAmpl, the output of the transformation is not necessarily the most
efficient representation. (In particular, the round trip from RobustOptProb to AMPL
text to RobustAmpl and back to RobustOptProb will typically produce a more complex
representation.) This limitation was accepted by design to keep the record transforma-
tion simple. To alleviate those issues and perform further simplifications, I implemented
a separate simplifier as another record transformation.
The record transformation sheet RobustOptProbSimplifier.cnrt (written by me) trans-
forms a record in the type system RobustOptProb to another record in the type system
RobustOptProb. In the output record, expressions are simplified where possible. Any-
thing that cannot be simplified is simply copied. The goals of the simplification are



84 CHAPTER 4. APPLICATIONS OF DYNGENPAR TO FORMAL LANGUAGES

twofold: On one hand, trivial operations such as multiplication by 1 are eliminated en-
tirely. On the other hand, patterns are matched to group multiple elementary operations
to more complex operations such as UQuadNode (a node representing a general univariate
quadratic, of the form ax2 + bx + c, where x is a variable and a, b, and c are constant
coefficients) wherever possible. The following simplifications are currently performed:

• simplifying sums or products containing of only one element to just that element,
• simplifying sums or products containing multiple constants by replacing them with

their constant sum resp. product,
• eliminating constant 1 terms from coefficient products and constant 0 terms from

coefficient sums,
• converting powers by the integer 2 to a UQuadNode,
• simplifying a constant times a UQuadNode by pulling the constant factor into the

UQuadNode, i.e., k(ax2 + bx+ c) = (ka)x2 + (kb)x+ (kc),
• simplifying quadratic sums (i.e., sums of UQuadNodes in a given variable x, linear

terms in the same variable x, and constants) to a single UQuadNode ax2 + bx+ c.
Any arithmetic operations that come up during the simplification are performed on the
data types that the operands have. In particular, if one or both of the operands is
an interval (even a point interval), an interval operation with outward rounding is per-
formed, producing an interval as the result. If the operands are approximate floating-
point (Double) constants, the operation is performed with simple rounding and the result
is again a Double. This ensures that models read with rigorous input enabled, where all
non-integer coefficients are intervals, are treated rigorously, whereas approximate models
remain approximate.
It shall be noted that several of the above simplification steps can uncover new opportuni-
ties for simplification. E.g., a UQuadNode is built in several steps: first, the second power
is detected and a UQuadNode is built from it, then the constant coefficient is pulled into
the UQuadNode, yielding a UQuadNode for the quadratic term, and finally, that term and
the linear and constant terms are grouped into a single UQuadNode. The elimination of
trivial sums and products can also uncover new simplification opportunities by rendering
further operations trivial. Therefore, it is often beneficial to run multiple iterations of the
simplifier. Typical examples take around three iterations to fully simplify.



Chapter 5

DynGenPar and the Grammatical
Framework (GF)

This chapter discusses the interoperability between DynGenPar and the Grammati-
cal Framework (GF) (Ranta [77, 78], Ranta et al. [79]). GF is a state-of-the-art
framework for grammar-driven natural language processing. It comes with repositories of
linguistic and morphological information, called resource grammars. Hence, using the
framework, it is easy to parse – with some restrictions – natural language text and to pro-
duce grammatically correct natural language output. Therefore, in the FMathL project,
it was envisioned to leverage the information contained in a GF resource grammar in one
way or another. This chapter documents the outputs of that research.
DynGenPar is interoperable with GF to the point where, in many cases, DynGenPar can
be used as a drop-in replacement for either of the GF runtimes. I.e., it is possible to
first use the GF compiler to compile the grammar to the runtime representation, then use
DynGenPar to parse input using the compiled grammar. Even though DynGenPar was
not optimized for this use case, the performance is within an order of magnitude of both
available GF runtimes (see Section 7.1.2). A drawback is that using DynGenPar in this
way does not allow leveraging the full feature set of DynGenPar, in particular, dynamic
rule addition at runtime.
The first section summarizes the first attempt at interoperating with GF in the FMathL
project, by developing C bindings to its Haskell code. The second section presents how
compiled GF grammars in the PGF (Portable Grammar Format) file format can be im-
ported by DynGenPar. The next section describes a lexer compatible with GF, imple-
mented as a DynGenPar token source. The next section presents a GUI application
demonstrating the prediction functionality of DynGenPar on PGF grammars. The last
section documents a proof of concept for a GF application grammar for a tiny subset of
natural mathematical language.
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5.1 C Bindings for the GF Haskell Runtime

This section briefly summarizes the historical C bindings that I had developed for the
Haskell runtime of the Grammatical Framework (GF) (Ranta [77, 78], Ranta et al.
[79]).
In 2008-2009, our work group had the problem that we wanted to interface with the
grammatical knowledge encoded in the GF resource grammars, but, at the time, the only
way to use that knowledge was the GF Haskell runtime. GF grammars are compiled
into PGF (Portable Grammar Format) (Angelov et al. [4]) grammar files. The GF
runtime is a library that loads such PGF files and uses them to parse or linearize text.
At the time, there was only a Haskell implementation.
Therefore, I implemented a C binding for the GF Haskell runtime using the Haskell
foreign function interface (FFI). The typical use of the FFI is to use C code from Haskell.
However, it can also be used in the opposite direction, to use Haskell code from C, which
is what my bindings do. Those bindings were the only convenient way to use PGF files
from C or C++ code at the time.
The Haskell functions needed to parse and linearize text using a PGF grammar are
wrapped with a C interface. Haskell objects are represented in C using the HsStablePtr
type, which corresponds to the StablePtr Haskell type. Lists are represented as arrays
terminated by a null pointer. Convenience functions to free an entire list are implemented
in C.
In 2010, the Haskell implementation of the GF lexer was moved from the runtime library
to the command-line interface. Therefore, for the C bindings, to avoid requiring the entire
GF command-line interface, I reimplemented the lexer in C.
These C bindings were included with several GF releases. They were moved to a separate
gf-contrib repository in 2013. The C bindings also served as the base for the GF Python
bindings.
These C bindings for the GF Haskell runtime have since been obsoleted by the new GF
C runtime, which is now implemented directly in C, making it unnecessary to bind the
Haskell implementation. On the other hand, in our work group, the idea of using either GF
runtime directly has been abandoned in favor of the GF interoperability in DynGenPar
described in the next sections.

5.2 PGF (Portable Grammar Format) File Import

The DynGenPar implementation can import PGF (Portable Grammar Format)
(Angelov et al. [4]) grammar files produced by the Grammatical Framework (GF).
This section describes how this is achieved.
The PGF file format is a binary format based on parallel multiple context-free grammars
(PMCFGs) (Seki et al. [88]). Therefore, the support for PGF files in DynGenPar builds
upon the parser’s support for PMCFGs (see Section 2.2.3.6). The import is handled
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by converting the PGF file to PMCFG standard form. A few extensions (Kofler &
Neumaier [56]) to the PMCFG standard form, supported by DynGenPar, are required
for some GF features:

• Additional context-free rules can be given, the left-hand sides of which can be used
as “tokens” in the expression of PMCFG functions.

• Next token constraints (see Section 2.2.3.7) can be used. This and the previous
extension are required to support GF’s rules for selecting, e.g., “a” vs. “an”.

• PMCFG functions can be given a token (or a context-free nonterminal as above)
as a parameter, in which case the syntax tree will reproduce the parse tree of that
symbol verbatim, including attached data, if any. This extension is required to
support GF’s builtin String, Int and Float types.

Given DynGenPar’s existing support for context-free grammars and next token con-
straints, it was straightforward to implement these extensions.
A PGF file is a binary serialization of the Haskell data structures used by the GF compiler
and the GF Haskell runtime, based on the Data.Binary Haskell library. Unfortunately,
the binary serialization produced by Haskell is very different from the one used by Qt’s
QDataStream class. Therefore, PGF files cannot be read with QDataStream. Instead,
I implemented a HaskellDataStream class with an interface imitating QDataStream.
Like QDataStream, HaskellDataStream overloads the >> operator with functions that
read bytes from the underlying QIODevice, decode them, and store the result into the
right-hand operand. Overloads of the operator>> are provided not only for the basic
Data.Binary types, but also for the PGF structures as serialized by the PGF.Binary
module. The serialization of those structures builds upon the serialization of the primi-
tive types, both in the Haskell implementation and in DynGenPar’s HaskellDataStream
class. The HaskellDataStream class is not part of the public DynGenPar API, i.e., users
of DynGenPar are not expected to access this class directly. It is, instead, designed to be
used in the implementation of the Pgf class, through which DynGenPar users can make
use of its functionality.
The core of the PGF file import code in DynGenPar is the Pgf class. It is part of the
public DynGenPar API, i.e., it is exported directly to programs using DynGenPar. The
Pgf class is, in fact, the one class which gives DynGenPar users access to the PGF import
functionality. The Pgf class represents the information contained in PGF files in a format
that can be processed by DynGenPar. The constructor takes the name of a PGF file to
load, and optionally the name of the concrete grammar to import from the PGF file. One
single PGF file can contain multiple concrete grammars for the same abstract grammar.
DynGenPar can only work with one concrete grammar at a time. Therefore, if the PGF
file contains more than one concrete grammar, the name of the concrete grammar to
use is required. (If no concrete grammar name is specified and if the PGF file contains
only one concrete grammar, that concrete grammar is loaded. If no concrete grammar
name is specified and if the PGF file contains multiple concrete grammars, a fatal error is
raised. A fatal error is also raised if the specified concrete grammar name is not present
in the PGF file.) The Pgf class constructor reads the data from the PGF file using the
HaskellDataStream class described above and stores it in its class member variables.
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The Pgf class has the following data members:
• pmcfg: the PMCFG in its standard form, with the extensions given at the beginning

of this section. The Pmcfg structure, the type of this variable, also contains the start
category. Grammar symbols (tokens and categories) and functions are identified by
integers.

• catNames: the names of the grammar symbols, i.e., the tokens and the (nonterminal)
categories, as a QStringList. Those names are in general not unique, because a
PGF file can contain multiple copies of the same category with different attribute
values. (See Section 2.2.3.6 for how attributed grammars are handled by the GF
compiler.)

• functionNames: the names of the PMCFG functions as a QStringList. Those
names are in general not unique either, because GF supports function overloading.

• tokenHash: a hash table mapping the token strings to their integer identifiers, for
quick lexing of the tokens.

• suffixes: the list of token suffixes with their integer IDs. GF supports a special
symbol called Prelude.BIND. (Up to GF version 3.5, it was a token with the special
value "&+". As of GF version 3.6, it is now a dedicated type of symbol.) When
linearizing, i.e., when producing text using the grammar, this token pastes the
previous and the succeeding token together. During parsing, the lexer needs to split
the token at those points. Therefore, the PGF file import code collects a list of all
the tokens that follow Prelude.BIND in the grammar to help the lexer do that.

• componentNames: a hash table mapping each category name to the list of names
of its components. A PMCFG category can consist of multiple components. In
GF, those components have names. The mapping is from the name of the category
rather than from its integer ID because, when there are multiple variants of the
same category for different attributes, those all have the same components. Those
multiple category variants have the same name, but different IDs.

• firstFunction: the ID (an integer) of the first true function. The PGF import
creates several synthetic PMCFG functions called coercion functions, which are
basically only typecasts. They are given the lowest IDs. This variable stores the ID
of the first function that is not such a coercion function.

The constructor of the Pgf class performs the following steps:
1. It deserializes the contents of the PGF file using the HaskellDataStream class

described above. I.e., it reads those file contents into data structures that closely
match the on-disk representation.

2. It picks the requested concrete grammar out of the list of concrete grammars con-
tained in the PGF file.

3. It identifies the start category and stores it in the Pmcfg structure.

4. It converts the list of category names catNames and the lists of their component
names componentNames.
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5. It adds the special token-like symbols of GF to the set of tokens in the Pmcfg
structure. Those are the GF symbols Var, Float, Int, and String, which are
treated as tokens carrying a value in DynGenPar.

6. It converts the sequences, i.e., the right hand sides of PMCFG functions, to Dyn-
GenPar sequences. This is done separately from converting the functions and rules
because PGF files store the sequences separately and reference them by their num-
ber in the functions. Any tokens that are encountered are added to the set of tokens
in the Pmcfg structure and to the tokenHash hash table. The suffixes list (see
above) is also created in this step. Some PGF files contain tokens that end in a dot,
which complicates lexing. Therefore, if a token ends with a dot, the dot is split off
into a separate token.
A particularly complex item that can be contained in a PGF sequence is the GF
pre construct. The pre stands for “prefix matching”. The construct lists a list of
tokens, from which only one is valid, depending on the beginning (prefix) of the
token that follows. If several prefixes match, the first that matches is selected. E.g.,
the English indefinite article is defined (in ResEng.gf in the GF source code) as:

pre {
"eu" | "Eu" | "uni" | "up" => "a" ;
"un" => "an" ;
"a" | "e" | "i" | "o" | "A" | "E" | "I" | "O" => "an" ;
"SMS" | "sms" => "an"
_ => "a"

}

i.e., if the word starts with “eu. . . ”, “Eu. . . ”, “uni. . . ”, or “up. . . ”, use “a”, other-
wise, if it starts with “un. . . ”, use “an”, otherwise, if it starts with a vowel other
than “u. . . ” or with “SMS. . . ”, use “an”, otherwise, use “a”. These constructs are
represented in DynGenPar as context-free categories. As an extension to standard
PMCFGs, those context-free categories are treated like tokens in the PMCFG. For
every unique alternative (e.g., in the above example, “a” and “an”), a context-free
rule for the category producing the alternative token is generated. The rule is con-
strained by a placeholder next token constraint of type “expect” with an empty
list of accepted next tokens. In addition, the lists of prefixes on the left and the
corresponding unique alternative are remembered so that the next step can add the
correct next token constraints to the rules. Note that the order of the prefix lists
must be preserved, and thus there can be multiple prefix lists for the same unique
alternative, as in the example above.

7. It adds next token constraints enforcing the above prefix matches. This has to be
done in a separate step because it requires the full set of tokens, which is only known
after importing all the sequences. The import process goes through all the tokens,
matches them against the lists of prefixes, picks the first that matches, and adds the
token to the corresponding rule’s list of expected tokens. As a special case, tokens
starting with the $ or ` character, which represent formulas, are allowed after any
article. Thus, they are added to each prefix match rule’s list of expected tokens.
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8. It generates the coercion functions for each category. Those are synthetic func-
tions that define the category. The coercion function for a category specifies the
number of components of the category. It is otherwise simply an identity function.
Coercion functions are used in the PMCFG like typecasts, thus the name. The PGF
files contain a special function for each category called its “lindef” (linearization
default definition). The intended purpose of those functions is not relevant for
DynGenPar. However, the “lindef” functions normally reflect the number of com-
ponents of the category. This property implies that the coercion functions needed
by DynGenPar can be generated from them. (The original “lindef” functions stored
in the PMCFG are not needed after generating the coercion functions, and are thus
discarded, replaced by the coercion functions.) The coercion functions are saved in
the Pmcfg structure, and their names (“coerce ” + the name of the category) stored
in the functionNames list.

9. It sets the firstFunction variable indicating the first true function.

10. It converts the true functions, i.e., those that are not coercion functions, to Dyn-
GenPar PMCFG functions. This is done in a separate step because those functions
do not need the special treatment that coercion functions need. It is also done sep-
arately from converting the rules because PGF files store the functions separately
and reference them by their number in the rules. Like the coercion functions, the
imported functions are also saved in the Pmcfg structure, and their names are also
stored in the functionNames list.

11. Finally, it imports the production rules. PMCFG files contain two different types of
productions. One of the types is a standard PMCFG rule, i.e., a call of a PMCFG
function. This type of rule is straightforward to convert to a DynGenPar PMCFG
rule. The other type of PGF productions is a coercion to a new variant of the same
category. That mechanism is used to avoid having to copy rules that accept multiple
variants of the same category. Instead of doing those copies, GF groups the accepted
variants of the category into a single coerced variant. That type of production is
converted to a call of the coercion function for the category. In addition, since GF
does not store a name for those coerced categories in the PGF file, a name (category
name + “(coerced)”) is automatically generated. In both cases, the converted rule
is saved in the Pmcfg structure.

The second class in DynGenPar’s public PGF API is the PgfParser class. PgfParser
is a subclass, operating on a Pgf object, of the DynGenPar Parser class. There is
also a convenience constructor that takes a file name and, optionally, a concrete gram-
mar name, and automatically constructs a Pgf object from those. Parsing with PGF
grammars requires a special lexer, which will be described in the next section. That
lexer needs access to the Pgf object, because that object contains the sets of tokens
and token suffixes. Therefore, the lexer is fully controlled by the PgfParser class and
hidden from the public API, ensuring that they always both work on the same Pgf ob-
ject. Thus, the PgfParser class provides methods to set a different input source (e.g.,
setInputFile), which are forwarded to the token source, i.e., the lexer. There are
also catName and functionName methods, which retrieve the name of, respectively, a
grammar symbol (i.e., a token or a category) or a function from their integer ID. The
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catName method also supports category components, producing names of the form “cat-
egoryName[componentName]”. The last method provided by the PgfParser class is
filterCoercionsFromSyntaxTree. That method operates on the PMCFG syntax tree
produced by DynGenPar’s parseTreeToPmcfgSyntaxTree utility function. In the case of
PGF grammars, that syntax tree can contain calls to coercion functions, which are typ-
ically not wanted in the final output. Therefore, the filterCoercionsFromSyntaxTree
method traverses the syntax tree recursively and removes all calls to coercion functions,
replacing them with their (unique) child node. (There is always exactly one child node
because a coercion function is simply an identity function.)
In order to test the PGF support, I wrote a simple test program, pgftest. The test
program takes the name of a PGF file as a command line argument, and either an input
file name as the second command line argument, or input from stdin. It assumes that
the PGF file contains exactly one concrete grammar. The pgftest program imports and
parses the PGF file using the PgfParser class. If parsing succeeds, it prints the parse
tree to stdout, runs parseTreeToPmcfgSyntaxTree on it, prints the resulting PMCFG
syntax tree to stdout, runs PgfParser::filterCoercionsFromSyntaxTree on that syn-
tax tree, and prints the resulting filtered syntax tree to stdout. (The intermediate trees
are output for demonstration and debugging purposes.) If a parse error is encountered,
the unexpected token and its position are printed to stderr. If the parsing completes
without hitting an error, but no syntax trees are produced, this means that the input was
incomplete. In that case, the pgftest program uses the DynGenPar prediction API to
output the valid continuations for the incomplete input to stderr.
I also ported the pgftest test program to Java using the DynGenPar Java bindings (see
Section 2.2.1 and Section 3.2). The Java code is exactly equivalent to the C++ code. The
ported PgfTestJava serves as the main test for the DynGenPar Java bindings outside of
the Concise framework (see Chapter 3).

5.3 PgfTokenSource – A GF-compatible Lexer

This section presents the PgfTokenSource, a lexer compatible with PGF grammars. It
describes how the lexer works, the peculiarities it needs to take care of, and the limitations
it currently has.
GF grammars are token-based, as opposed to scannerless. This is of course reflected in the
compiled PGF files. Therefore, parsing from PGF grammars requires a compatible lexer
(scanner). Thus, I implemented a GF-compatible lexer as a DynGenPar token source,
called PgfTokenSource. The token source was implemented more as a necessity than as
a research focus, designed for simplicity rather than perfection.
One important challenge is that, in GF, parsing is not completely separated from lexing.
Most importantly, the set of tokens that the lexer should be able to match is implicitly
given by the PGF file: The tokens appear as strings in the PGF rules. This means that
the lexer needs access to the Pgf grammar. Therefore, I decided to let the PgfParser
class own the PgfTokenSource, ensuring that they always both work on the same Pgf
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object. Thus, users of DynGenPar are expected to use the PgfTokenSource class only
through the PgfParser class that owns it, never directly, i.e., the PgfTokenSource class
is not part of the public DynGenPar API.
The main method of the PgfTokenSource is the readToken method. This is a virtual
method that all DynGenPar token sources must implement and that returns the next
token from the input. As in most token sources, the readToken method is where most of
the work happens.
The PgfTokenSource is a stateful lexer, meaning that the operation of the lexer depends
on the preceding context. In other words, this means that the readToken method saves
some information from one invocation to the next. That information forms the lexer
state. It consists of:

• the character position in the input stream,

• the boolean flags inFormula and pastFormula, which represent lexer states in the
traditional sense, and which are used when parsing formulas, and

• a list of suffixes, which are tokens that have already been matched and that will
be returned before consuming any further input.

The PgfTokenSource implements the virtual saveState and rewindTo methods, which
allow rewinding to a previous position in the text with the correct lexer state, i.e., without
confusing the lexer.
The first thing the readToken method does is to check whether there are any pending
tokens in the suffixes list. (Where those tokens come from will be explained below.) In
that case, it removes the first token from the suffixes list and returns it.
Next, it checks whether the input stream is completely consumed. In that case, it returns
the ε token. In DynGenPar, that is the token with the ID 0. It is how a token source
signals the end of the input. This check is typically the first thing a readToken method
does. However, in the PgfTokenSource, the suffixes must be checked first, because
they are already matched from previous stream input and thus the input only counts as
consumed when the suffixes are consumed.
What happens next depends on the parser state. Let us first consider the default state,
where both the inFormula and pastFormula flags are false. The basic principle is very
simple: The token source matches a token, which is either a number, or a word, or a
symbol. The following characters are considered alphabetic characters:

• letters (i.e. ‘A’ to ‘Z’ and ‘a’ to ‘z’),

• the ‘_’, ‘'’ and ‘\’ characters, and

• for simplicity, all non-ASCII UTF-8 characters, i.e., all bytes with value ≥ 128.
Technically, the Unicode codepoints should be decoded and a Unicode character
classification table used, but in practice, it is typically acceptable to just treat them
all as letters. Most non-ASCII Unicode codepoints are, in fact, letters. The ones
encountered in practice are typically either Latin letters with diacritics or non-Latin
letters.
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A lexeme is a character sequence that is recognized by the lexer as a token. The
PgfTokenSource applies the following rules:

• Lexemes are maximally matched, i.e., as long as characters matching the criteria
are available in the input, they are always (with one exception, given below) added
to the lexeme.

• Any lexeme that starts with an alphabetic character and contains only alphabetic
characters, dashes (‘-’), and digits (‘0’ to ‘9’) is a word.

• Any lexeme that starts with a digit and contains only digits and the characters ‘-’,
‘.’, and ‘e’ is a number. (Special care has to be taken for the ‘.’, which can also be
a sentence period. Therefore, as an exception to the maximal matching rule, the
PgfTokenSource accepts a ‘.’ only in the middle of a number, not at the end.)

• Lexemes starting with a ‘-’ character are either words or numbers depending on the
first character that is not a ‘-’. They are then processed with the same rules as other
words resp. numbers.

• Whitespace characters (i.e., characters for which std::isspace returns true) end
lexemes, but are otherwise ignored.

• Any other encountered character is treated as a symbol. Symbol characters are
always lexemes by themselves: They end the previous lexeme, and they do not
accept any further characters.

The above rules are not perfect. E.g., the ‘-’ character is accepted in the middle of a
number in order to accept valid numbers like “1e-3”, but that simple rule also incorrectly
treats “1-3” as one number. However, they have been good enough in practice so far.
Once the PgfTokenSource has identified the lexeme, i.e., the character sequence forming
the token, it converts it to the token ID to return. There are three special GF tokens
that accept (and in fact require) a value of the corresponding data type: String, Int,
and Float. (There is actually a fourth one, Var, which is currently not supported by
the PgfTokenSource.) The other tokens are determined by the PGF file and correspond
to a fixed character sequence. Therefore, they do not accept a value. One difficulty
is that the same character sequence can be interpreted in more than one way. And in
fact, different PGF grammars can expect a different interpretation of the same character
sequence. This occurs most often with the String value token, because basically any
character sequence can be returned as a String. But there are also grammars that want
to parse integers as words (i.e., as fixed-character-sequence tokens), whereas others expect
them to be returned as Int value tokens. And of course an integer could also be a String.
Therefore, it is often tricky to decide what type of token to return. In GF, the lexer and
the parser are tightly integrated. In DynGenPar, the PgfTokenSource would ideally call
into the PgfParser and use the prediction information to (help) make the decision. This
would be possible without changing the API, because the PgfTokenSource is already
internal to the PgfParser. However, this feature is not currently implemented. Instead,
the PgfTokenSource relies on the following heuristic rules:

• Any character sequence identified as a number by the rules in the previous paragraph
is returned as a number: If the sequence contains the characters ‘.’ or ‘e’, it is
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returned as a Float value token. If it does not contain any of those characters, it is
returned as an Int value token. The actual numeric value is attached as the value
of the token. If the character sequence fails to parse as a number (of the expected
type, i.e., double resp. int), an error token is returned instead. The error token will
trigger a parse error in the parser because it is intentionally not in the grammar.

• Any other sequence, i.e., one identified as either a word or a symbol, is treated as a
word. The PgfTokenSource first tries to match those as tokens using the tokenHash
hash table created in the Pgf structure during the PGF file import. It first tries to
match the character sequence exactly as in the input, then with the first character
converted to lower case. This is also a limitation, in two ways:
1. If the version with uppercase first character matches, the lowercase variant

is not even tried. Thus, if, e.g., both the German verb “liebe” and the Ger-
man noun “Liebe” are in the grammar, a sentence starting with the verb “liebe”
(capitalized as “Liebe”), e.g., “Liebe deinen Nächsten!”, will not be interpreted
correctly. This problem is not as frequent in English, where only proper nouns
are capitalized, but one English-language example would be “Turkey steaks
taste delicious.” (A workaround is to lowercase all the words in the grammar,
but that then produces an overgenerating grammar, i.e., one that accepts in-
correct sentences and may have bogus ambiguities. The workaround also relies
on the second limitation.)

2. The lowercasing is currently tried independently of the context, even where
capitalization does not make sense grammatically.

If there is no match, the PgfTokenSource tries to match suffixes. As explained
in the previous section, GF supports a special symbol called Prelude.BIND, which
pastes the previous and the succeeding token together. The PGF import creates
a list called suffixes of all the tokens that follow Prelude.BIND in a rule and
stores it in the Pgf structure. (The implied assumption is that Prelude.BIND is
actually followed by an explicit token. In practice, this is often, but not always the
case. Other uses of Prelude.BIND are not supported. The Prelude.BIND symbol
is then ignored, and the rule will only match if whitespace is added in the input to
separate the tokens.) The PgfTokenSource tries to match each of those suffixes, i.e.,
check whether the word ends with the suffix. If the suffix matches, the remaining
word is checked against the tokenHash table. If there is still no match, the process
is repeated until either the remainder is accepted as a token or no further suffix
matches. Once there is a match, the PgfTokenSource records the matched suffixes
in its own suffixes list and returns the remaining token. That suffixes list is
what is checked for pending tokens at the very beginning of readToken. It will
result in returning the matched suffix(es) in the next invocation(s) before lexing
any further input. It shall be noted that the suffix matching is subject to the same
limitation as the lowercasing: If a word is valid as a token, it will not be considered
for suffix matching at all.
Another special rule is used in order to allow incrementally parsing suffixes: If the
remaining word after matching suffixes is empty, the first suffix is returned as the
token. This bears the limitations that a lone suffix is falsely accepted as a valid
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word (but only if it is not also a valid word in the grammar, in which case the word
is preferred to the suffix), and that incrementally parsing a suffix is only possible if
the suffix is not also a valid word in the grammar.
If there is still no match after attempting to match suffixes, the word or symbol
is returned as a String value token, with the identified character sequence as its
value. This is done unconditionally because, if the grammar does not accept a
String at this location, it will just cause a parse error. Returning an error token
would have the exact same effect, except for the unexpected token in the error
message being different. There are, however, some practical limitations of this way
to handle String:
1. Since prediction information is not used at this time, a token is only returned

as a String if it does not match any other token type, even where the gram-
mar accepts only String. Therefore, it is not possible to use any word in the
grammar as a String (nor even a suffix, because lone suffixes are accepted for
incremental parsing support), nor a number. E.g., the GF example grammar
mathtext expects a String as the theorem identifier. The PgfTokenSource
does not accept a number for that String. Thus, theorems can only be num-
bered with identifiers like “T1”.

2. The PgfTokenSource has no way to know whether to accept any suffixes (and
return the rest of the string separately from the suffix tokens) or whether to
return the whole string as is. It currently always does the latter. This is not
always what is wanted, especially considering that the “String Prelude.BIND
token” sequence is a good reason to use Prelude.BIND.

3. A String stops at the first symbol character. This prevents recognizing,
e.g., a formula as one String token. As this functionality was required for
the grammars the FMathL team experimented with, I implemented a special
workaround for formulas, described below.

• A very special symbol is the ‘$’ symbol. That symbol is treated as a delimiter
for formulas. If the ‘$’ symbol is encountered, two things happen: On one hand,
it is processed like any other symbol (or word), i.e., as in the previous case. In
particular, if the ‘$’ token appears in the grammar, this results in the corresponding
token ID being found in the tokenHash table and returned. On the other hand, the
inFormula flag is set, putting the lexer into a special state, described below.

The first non-default lexer state is the state where inFormula is true. In that state, the
PgfTokenSource simply collects all the characters it encounters, until it encounters an
unescaped ‘$’ sign. The backslash is treated as an escaping character, i.e., the character
immediately following the backslash loses its special meaning. This means that the se-
quences “\\” and “\$” are treated as normal characters. The escaping backslash is also
retained. The readToken method then returns a String value token. The value is the
whole formula, i.e., the entire captured character sequence, not including the terminating
‘$’ symbol. In addition, the inFormula flag is cleared, and the pastFormula flag is set.
This implementation is what was needed for the FMathL project’s own grammars. It is,
though, also a limitation, because some GF grammars want to parse formulas in a more
detailed way, which is not supported by the PgfTokenSource. E.g., in the mathtext
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grammar, only variable names work as formulas, expressions like x ∈ S are not lexed
correctly.
The last lexer state is the state where pastFormula is true. (This also implies that
inFormula is false. The algorithm does not allow both flags to become true at the same
time.) That state is almost identical to the default state, but the next ‘$’ symbol only
unsets the pastFormula flag, it does not set the inFormula flag. This is needed because
the same symbol ‘$’ marks both the beginning and the end of a LATEX formula. The
first encountered character should always be ‘$’, but with incremental parsing, it can
also be something else. In that case, the first encountered alphabetic character results in
unsetting the pastFormula flag.
This algorithm results in a lexer that is sufficient in practice for many applications of PGF
grammars, subject to the aforementioned limitations. In particular, the current version
of the PgfTokenSource is sufficient for what was needed in the FMathL project. Some
improvements are envisioned for the future, but given the time constraints of the project
and the different focus of the DynGenPar development, I have not been able to pursue
them at this time:

• The lexer could be given a true understanding of Unicode, rather than operating
on UTF-8 bytes as it does now. The official Unicode character classification tables
could then be used.

• The lexing of numbers could be done in a more precise way, rejecting some invalid
numbers (e.g., “1-3”), that are currently accepted. This would result in lexing, e.g.,
the subtraction 1− 3 correctly as three separate tokens.

• Prediction information from the parser could be used to determine what tokens make
sense to return in any given context. This would allow lifting several of the current
ambiguities that currently require workarounds or heuristics, or that currently result
in lexing not working at all.

• For the ambiguity between capitalized and all-lowercase versions of a word at the be-
ginning of a sentence, context-free rules could be used to replace the two tokens, e.g.,
“turkey” and “Turkey”, with three tokens (i.e., in the example, “turkey”, “Turkey”,
and “[tT]urkey”). The third token would be the one returned when the case can-
not be determined because the context forces capitalization. The context-free rules
would then be of the form:

c_turkey → turkey | [tT]urkey,
c_Turkey → Turkey | [tT]urkey,

and the synthetic categories c_turkey and c_Turkey would be used instead of the
tokens “turkey” resp. “Turkey”. This would also require changes in the PGF import
code. (Alternatively, one could consider simply adding rules of the form:

turkey→ [tT]urkey,
Turkey→ [tT]urkey,

at runtime, but that would require changing the DynGenPar implementation to
allow symbols that are both tokens and nonterminal categories.)
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5.4 PGF GUI – Graphical Demo Application for Pre-
diction on PGF Grammars

This section describes the DynGenPar PGF GUI, a GUI application that demonstrates
both the PGF (Portable Grammar Format) file import and the prediction abilities of
DynGenPar. The proof-of-concept user interface lets the user input text conforming to a
GF (Grammatical Framework) grammar by interactively selecting from the list of possible
next tokens allowed by the grammar. This shows how autocompletion could work based
on the prediction functionality in DynGenPar, though it does not allow entering freeform
text. True autocompletion allowing freeform text entry was implemented later in the
Concise parsable file views (see Section 3.3.5).
The PGF GUI is a GUI frontend for the GF interoperability in DynGenPar. The user
interface is based on the libraries Qt 4 (Qt Company [74]) and kdelibs (KDE libraries) 4
(KDE Webmasters [44]). In addition, the application uses DynGenPar. In particular,
it uses the classes operating on the PGF grammar files generated by GF (see Section
5.2) and the prediction API that enumerates the possible continuations for the input (see
Section 2.2.3.1).
To use the PGF GUI application, one first needs to select a PGF file containing a com-
piled GF grammar. The application starts up with an example PGF file (a simple test
grammar) loaded by default. It is possible to select another PGF grammar using the
File / Open. . . menu entry. The application currently accepts only PGF files containing
exactly one concrete grammar. A PGF file can contain multiple concrete grammars for
the same abstract grammar; this is currently not supported and will result in the PGF
GUI terminating with a fatal error. (This limitation exists because the PGF GUI is only
a simplified proof of concept. A production application would allow the user to select one
of the contained concrete grammars.)

Figure 5.1: Screenshot of the PGF GUI in text entry mode
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The main window (Figure 5.1) is divided into two vertical halves. The upper half is a
read-only view of the text that has been input so far. Initially, it is empty. The lower
half is a tree view with a search box on top. It has two different purposes, depending on
whether text entry is active or complete.
During text entry, the tree view is filled with the suggestions computed by the DynGenPar
predictive parsing methods. The suggested tokens are not presented as a flat list, but as a
tree, giving the user some context. The categorization is done according to what symbol
the prediction algorithm encounters:

• If the prediction sees a specific token as the next symbol in the rule currently being
parsed, this token is offered. In this case, no categorization is done.

• If, on the other hand, the prediction encounters a nonterminal category C, a tree
of suggestions is built. At the highest level, the category C is shown. As explained
in Section 2.2.3.1, the prediction algorithm then expands that category to a list of
possible symbols it can start with. (In other words, it goes through all the rules for
this category, and picks the first symbol of each rule.) This is repeated recursively,
in a top-down manner, until a token is reached. (Directly or indirectly left-recursive
rules are skipped because they cannot produce any additional leading tokens. This
prevents running into an infinite loop.) Once a token is reached, the nonterminal N
that expanded to the token is remembered, along with the token T it expanded to.
Note that N can also be equal to C, but in most cases, it is not. In the produced
prediction tree, the found nonterminal categories N are attached as children of C,
and for each N , the tokens T it (directly) expands to are attached as children of N .

The tree is then sorted alphabetically at each level.
The search box, a text box above the tree view, allows filtering the suggested tokens.
This is most useful when the (categorized) list of tokens is very long. Entering some text
into the search box hides all suggested tokens that do not start with the entered text. If,
as a result, some nonterminals no longer correspond to any visible tokens, they are also
hidden.
Clicking on one of the tokens in the tree appends that token to the input. The updated
input is immediately shown in the upper half of the user interface. Clicking on a nonter-
minal category has no effect. As a special case, clicking on one of the GF tokens requiring
a value (String, Int, or Float) brings up a dialog box in which a value can be entered.
(Warning: The value is currently not validated. Entering something that is not recog-
nized as being of the appropriate type will confuse the parser and result in an error. For
a String, what is valid depends on the context: In a formula, everything not containing
the formula delimiter $ is a valid string. Outside of a formula, only a single word, starting
with a letter, and not corresponding to a word in the grammar is accepted as a string.
See the list of limitations in the previous section.)
If the tree view offers no suggestions, this means that there is no valid way to continue
the input. Normally, this means that the input is complete. However, context-sensitive
constraints can also trigger this condition. E.g., if the grammar contains no noun starting
with a vowel, the article “an” may still be initially offered, but then there will be no valid
token to follow “an”. In that latter case, the user’s only option is to go back using the
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Edit / Undo menu entry. Undo is also supported in other contexts. The PGF GUI does
that by remembering the parse state after each token, making it easy to rewind to the
previous one.

Figure 5.2: Screenshot of the PGF GUI displaying a produced syntax tree

Once the user has entered a complete sentence, the PGF GUI can build the corresponding
GF syntax tree (Figure 5.2). In some grammars, as mentioned in the previous paragraph,
it is easy to detect that the sentence is complete because the list of possible continuations
will be empty. In other grammars, it is always possible to add some more text, and thus
the list of suggestions is never empty. In either case, use the Edit / Generate syntax tree
menu entry to build the GF syntax tree for the sentence. If the input is not complete,
this results in an error dialog (with the message “The input is incomplete. Only complete
input can be parsed.”), and the user can continue inputting. If the input is complete, the
syntax tree is built and replaces the suggestion tree in the lower half of the user inter-
face. One can use the Edit / Undo menu entry to go back into inputting mode. The GF
syntax tree is an abstracted version of the parse tree, generated from the parse tree us-
ing the parseTreeToPmcfgSyntaxTree and filterCoercionsFromSyntaxTree methods
described in Section 5.2. It is the same tree that GF would also produce.
The Edit / Clear menu entry can be used at any time to restart inputting from scratch.
(Warning: This cannot be undone. If one accidentally clears the input, one will have to
reenter it completely.)

5.5 A GF Application Grammar for Mathematical
Language

The Grammatical Framework (GF) was also used as the framework for some early research
on grammars for natural mathematical language in the FMathL project (Neumaier [70]).
This section documents two versions of a research grammar I implemented together with
Peter Schodl in the GF programming language.
While GF ships with grammars for several natural languages, called the resource gram-
mars, those grammars are not normally used directly to parse natural-language texts, for
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several reasons:
• The resource grammars only know about purely linguistic grammar concepts, with

few to no semantics. E.g., the resource grammar knows about noun phrases while a
grammar for mathematics must instead have the concept of a mathematical object
(that happens to be linguistically a noun phrase).

• This lack of semantic knowledge makes the resource grammars unsuitable for auto-
matic translation. Every language comes with its own resource grammar, there is
no complete abstract grammar common to all languages. (There is an attempt at
a common abstract grammar, but it is limited and does not cover language-specific
idioms.)

• The resource grammars are huge, making it very inefficient and impractical to parse
large documents with them.

• The lexicon typically has to be provided by the application, because the sample
lexica included with the resource grammars do not cover the subject-specific terms
of any given application.

• The resource grammars also do not know about common application-specific idioms,
which are therefore only recognized (if at all) as their linguistic components. E.g.,
the idiom let x be an integer is recognized as a third-person imperative ordering
the proper noun x to be the noun phrase an integer. This also implies that such
expressions are not necessarily translated into the correct idiomatic expression in
other languages.

Therefore, it is commonplace in GF to define an application grammar that builds on top
of the resource grammar, extracting only the subset reasonable for the given application,
and adds application-specific knowledge. The application grammar normally consists of
two parts:

• The abstract grammar defines how an abstract syntax tree should look like. It
is typically a semantic representation, not a purely linguistic one. In a multilingual
grammar, the abstract grammar is common to all supported languages. The ab-
stract syntax trees conforming to the abstract grammar are therefore the common
representation used as the lingua franca for translation. The abstract grammar
roughly corresponds to the type systems (Schodl & Neumaier [86]) in Concise
(without any usage annotations).

• The concrete grammar defines how the abstract concepts declared in the abstract
grammar shall be worded in a specific language. There must be a separate concrete
grammar for each natural language. However, it is often possible to use abstract
GF resource grammar interfaces that work across several languages, and to define a
common base concrete grammar that has to be extended only with the few things
that depend on the language. (Whether to use the common base or whether to start
from scratch is then a decision left to the implementor of the particular concrete
grammar. Thus, some languages can use the common base, whereas languages using
very peculiar idioms can opt to remain separate.) The concrete grammars roughly
correspond to usages in Concise type sheets (see Section 3.2).



5.5. A GF APPLICATION GRAMMAR FOR MATHEMATICAL LANGUAGE 101

Thus, an early goal in the FMathL project was to write a GF application grammar –
both an abstract grammar and a concrete grammar – for a small controlled subset of
mathematical language. How to integrate this research with our existing Concise system
was still an open question at that time.
The focus of that research was linearization (the opposite of parsing, i.e., generating text
from abstract syntax trees), which was performed using the linearization functions of the
C bindings for the GF Haskell runtime (see Section 5.1).
The first version of that application grammar was a small proof of concept entirely hand-
written by me. Peter Schodl provided me with some examples of how the abstract syntax
trees should ideally look like. We agreed on the following example sentences:

• Suppose that K + f = x ∈ S, where K is an integer and f ∈ [0, 1).
• S is the set of eigenvalues of the matrix A.

in LATEX notation, i.e.:
• Suppose that $K + f = x \in \mathcal{S}$, where $K$ is an integer

and $f \in [0,1)$.
• $S$ is the set of eigenvalues of the matrix $A$.

The grammar only covers the text, the formulas are represented as verbatim strings. In
my handwritten application grammar, the above example sentences correspond to the
following abstract syntax trees, in the LISP-style notation used by GF:

• AssumptionSentence (Suppose (Stmt (Rel (Dollar "K + f = x \in
\mathcal{S}"))) (And (Is (Var (Dollar "K")) (Det IndefSgArticle
IntegerType)) (Stmt (Rel (Dollar "f \in [0,1)")))))

• StatementSentence (Is (Var (Dollar "S")) (DetQual DefSgArticle
SetType (Qual OfPrep (DetQual IndefPlArticle EigenvalueType (Qual
OfPrep (DetFormula DefSgArticle MatrixType (Dollar "A")))))))

The complete GF source code of the proof of concept is reproduced below:
Abstract grammar Math.gf:

-- Copyright (C) 2010 Kevin Kofler

abstract Math = {
flags startcat = Sentence ;
cat
Sentence ; Assumption ; Statement ; Relation ; Variable ; Formula ;
Object ; Article ; ObjectType ; Preposition ; Qualification ;

fun
IndefSgArticle : Article ;
IndefPlArticle : Article ;
DefSgArticle : Article ;
DefPlArticle : Article ;
IntegerType : ObjectType ;
SetType : ObjectType ;
EigenvalueType : ObjectType ;
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MatrixType : ObjectType ;
OfPrep : Preposition ;
Det : Article -> ObjectType -> Object ;
DetQual : Article -> ObjectType -> Qualification -> Object ;
DetFormula : Article -> ObjectType -> Formula -> Object ;
Qual : Preposition -> Object -> Qualification ;
Dollar : String -> Formula ;
Var : Formula -> Variable ;
Rel : Formula -> Relation ;
Stmt : Relation -> Statement ;
Is : Variable -> Object -> Statement ;
And : Statement -> Statement -> Statement ;
Suppose : Statement -> Statement -> Assumption ;
AssumptionSentence : Assumption -> Sentence ;
StatementSentence : Statement -> Sentence ;

}

Concrete grammar MathEng.gf:

-- Copyright (C) 2010 Kevin Kofler

--# -path=alltenses:../lib/prelude:../lib/alltenses

concrete MathEng of Math = open Prelude, ResEng, TryEng, ExtraEng in {
flags language = en_US;
lincat

Sentence = Text ;
Assumption = Imp ;
Statement, Relation = S ;
Variable = PN ;
Formula = Str ;
Object = NP ;
Article = TryEng.Det ;
ObjectType = N ;
Preposition = Prep ;
Qualification = {p : Prep ; o : NP} ;

lin
IndefSgArticle = a_Det ;
IndefPlArticle = aPl_Det ;
DefSgArticle = the_Det ;
DefPlArticle = thePl_Det ;
IntegerType = mkN "integer" ;
SetType = mkN "set" ;
EigenvalueType = mkN "eigenvalue" ;
MatrixType = mkN "matrix" "matrices" ;
OfPrep = mkPrep "of" ;
Det article objecttype = TryEng.mkNP article objecttype ;
DetQual article objecttype qualification = TryEng.mkNP article (mkCN
(mkN2 objecttype qualification.p) qualification.o) ;
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DetFormula article objecttype formula = TryEng.mkNP article (mkCN
objecttype (TryEng.mkNP (formulaToPN formula))) ;

Qual prep obj = lin Qualification {p = prep ; o = obj} ;
Dollar s = "$" ++ s.s ++ "$" ;
Var f = formulaToPN f ;
Rel f = lin S {s = f} ;
Stmt relation = relation ;
Is var obj = MathEng.mkS (mkCl (TryEng.mkNP var) (mkVP obj)) ;
And s1 s2 = MathEng.mkS and_Conj s1 s2 ;
Suppose statement withcl = mkImp (mkVP (mkVS (mkV "suppose"))

(MathEng.mkS statement (mkAdv (mkSubj "where") withcl))) ;
AssumptionSentence a = mkText (mkUtt a) ;
StatementSentence s = mkText s ;

oper
formulaToPN : Str -> PN = \f -> lin PN {s = table

{Gen => f ++ Prelude.BIND ++ "’s" ; _ => f} ; g = nonhuman} ;
-- add a mkS S Adv
-- Without this, it "works" for English, but only because S and Adv happen
-- to have the same linearization!
-- (It actually uses mkS Adv S with the S and Adv swapped.)
mkS = overload TryEng {

mkS : S -> Adv -> S = \s,a -> lin S {s = s.s ++ "," ++ a.s} ;
} ;

}

The issue we had with this approach was that for every addition to the grammar, it was
necessary to update two different places in lockstep: the type system in the semantic
memory and the GF grammar. If those went out of synchronization, it was no longer
possible to convert the abstract syntax trees in either direction.
Therefore, Peter Schodl came up with a new idea: He wrote a MATLAB script that
automatically generated a GF abstract grammar from his MATLAB implementation of
the semantic memory. I then wrote the corresponding concrete grammar. To help with
both debugging the abstract grammar and implementing the concrete grammar, I wrote a
Perl script mkdummy.pl that automatically generated a concrete grammar for the dummy
language Tre (short for “trees”). That dummy language linearizes parse trees to a LISP-
style notation essentially identical to the input notation. This allows a quick verification
that the abstract grammar is valid. If it is not, either mkdummy.pl will complain, or the
GF compiler or runtime will produce an error, or the mistake is easy to spot in the output.
It also produces a starting point for the actual English concrete grammar, like a form to
fill in. I wrote the concrete grammar for English based on that starting point.
This second version of the application grammar covers a larger controlled subset of
mathematical language than the first proof of concept. In addition, the MATLAB
implementation of the semantic memory was able to automatically generate the GF
input that could then be sent to GF for linearization. The drawback is that the abstract
syntax trees are more verbose than in the first version. E.g., the sample input:
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(_Sentence (_SentencePartLink (_Let2SentencePart ((_Let (_Obj
(_Empty2TextUnit (_Empty)) (_Concept2ConceptGeneral ((_Concept
(_Empty2ConceptGeneral(_Empty)) (_Set2SentencePart ((_Set)))
(_Qualification (_Concept2ObjConc ((_Concept (_Positive2ConceptGeneral
((_Positive))) (_Integers2SentencePart ((_Integers)))
(_Empty2Qualification (_Empty))))))))) (_MathString2Expression
((_MathString ("S")))) (_Empty2Expression (_Empty)) (_Empty2Qualification
(_Empty)) (_Empty2TextUnit (_Empty))) (_Empty2Expression (_Empty))
(_Concept2ConceptGeneral ((_Concept (_Empty2ConceptGeneral (_Empty))
(_Set2SentencePart ((_Set))) (_Qualification (_String2ObjConc ("item
size"))))))))) (_Empty2SentencePartLink (_Empty))))
produces the LATEX output:
Let the set of positive integers $S$ be the set of item sizes.
which renders to:
Let the set of positive integers S be the set of item sizes.
These proofs of concepts have not been pursued further, as the focus of our research
switched to grammars written as Concise type sheets annotated with usages (see Section
3.2). The insights gained from the research on GF application grammars were extremely
useful for the grammars now written as Concise type sheets, and research is ongoing on
how to make use of the information encoded in the GF resource grammars within the
Concise framework. While GF is an extremely powerful framework, it assumes a way
of working that turned out to map poorly to the current and intended workflows in the
FMathL project, making this way of interfacing with GF too inconvenient in the long
run:

• Concise has its own representation of type systems (Schodl & Neumaier [86]).
Using a GF application grammar for a type system requires mapping that type
system to a GF abstract grammar. The mapping Peter Schodl developed produced
really complex abstract syntax trees, due to the need for type cast functions. It is
unclear to our work group whether we can produce better mappings automatically
without reducing the flexibility of our type systems.

• In Concise, the goal is to encode the entire grammar in our type sheets (see
Section 4.1), not just the abstract grammar, but also the concrete grammar.
Concrete grammar information is encoded through so-called usages (see Section
3.2). Producing a GF application grammar from that information would require
automatically generating not only the abstract grammar, but also the concrete
grammar, which would be significantly harder. Writing the concrete grammar for
the automatically-generated abstract grammar by hand requires writing complex
code such as:
_Concept2ObjConc x1 = lin ObjConc {e = x1.e ; np = table {Definite
=> TryEng.mkNP (DefArticle x1.n) x1.cn ; Indefinite => TryEng.mkNP
(IndefArticle x1.n) x1.cn}} ;

• A goal of the FMathL project is to make writing grammars accessible to every
mathematician. Unfortunately, to access the large repository of grammatical knowl-
edge that comes with GF, it is necessary to write idiomatic sentences (e.g., for



5.5. A GF APPLICATION GRAMMAR FOR MATHEMATICAL LANGUAGE 105

Is var obj) using APIs such as MathEng.mkS (mkCl (TryEng.mkNP var) (mkVP
obj)) ;. A mathematician will want to write something like #var is #obj in-
stead. That verbatim notation has obvious issues when it comes to things such as
subject-verb agreement, but the FMathL project aims at finding a middle ground
between the complete grammatical analysis required by the GF resource grammar
API and straightforward verbatim text with no grammatical information. Some
research in that direction is now ongoing.
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Chapter 6

Applications of DynGenPar to
Natural Language

The main goal of DynGenPar is natural language processing, though, as described in
Chapter 4, DynGenPar has also been successfully used for several formal languages. This
chapter enumerates and documents applications of DynGenPar to various controlled sub-
sets of natural language, including

• Naproche (Cramer et al. [17], Koepke et al. [46]),
• MathNat (Humayoun & Raffalli [41], Humayoun [40, 39]), and
• a subset of natural LATEX formula notation (without dedicated semantic markup),

progressing towards the research goal that has driven DynGenPar development. The long-
term aim is to grow the supported controlled subset of natural language until it ultimately
covers all commonly-used idioms and to allow the user to add custom rules for anything
beyond that.
The first section documents a hierarchical DynGenPar grammar for the Naproche lan-
guage, a controlled natural language for mathematical logic. The second section describes
a toolchain, based on LaTeXML (Miller [67]), to automatically process complete LATEX
documents with Concise and DynGenPar. The third section describes a Concise type sheet
for a limited subset of natural mathematical language whose main feature is mathemat-
ical definitions. This type sheet serves as a proof of concept for dynamic rule additions,
which happen as definitions are encountered. Andreas Pichler has, in his master the-
sis (Pichler [73]), extended this type sheet to be able to parse a text that introduces
matrix calculus. The fourth section describes a work-in-progress Concise type sheet for
the MathNat language, a larger subset of natural mathematical language. Finally, the
fifth section details a grammar for LATEX formulas in natural notation implemented as a
Concise type sheet.

107
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6.1 Naproche Parser using DynGenPar

This section introduces the DynGenPar parser for the Naproche (Cramer et al. [17],
Koepke et al. [46]) language, a controlled natural language for mathematical logic. It was
the first controlled natural language implemented using DynGenPar. The implementation
is hierarchical: a text parser and a subordinate formula parser, both using Flex (Flex
Project [26]) and DynGenPar. In other words, there is not one single grammar, but a
pair of DynGenPar grammars that together implement the Naproche language. Unlike
later grammars in this chapter, which are implemented as Concise type sheets, the pair
of Naproche grammars is implemented directly in C++.
An important note is that the Naproche EBNF grammar that was available to me
(Kühlwein [62]) appears to be from an early version of Naproche. Newer versions im-
plement additional language constructs that are only roughly documented (without a
precise grammar) in the Naproche wiki (Cramer & Kühlwein [18]), but not included
in the grammar. Since the source code of the Naproche implementation is not public,
the extended grammar used by the current version of the actual implementation was not
available to me. Therefore, and because this was essentially a proof of concept, I decided
to implement the available EBNF grammar as is, without the extensions added in later
versions.
The Naproche EBNF grammar is a static context-free grammar. Therefore, it is also
suitable for traditional parser generators. Hence, I wrote a first implementation using
Flex (Flex Project [26]) and GNU Bison (Free Software Foundation [28]). Flex
was used to generate the lexer, Bison was used to generate the parser. The grammar is not
in LALR(1) (DeRemer [20]), so I used Bison’s Generalized LR (GLR) mode. (The Bison
GLR mode is actually generalized LALR(1), but that is sufficient to parse general context-
free grammars.) Subsequently, I ported the grammar from Bison to DynGenPar, still using
Flex for the lexer. (Flex lexers are one of several possible token sources for DynGenPar,
see Section 2.2.3.5.) This allowed benchmarking the performance of DynGenPar against
Bison. Those measurements showed that at raw parsing, DynGenPar comes within an
order of magnitude of Bison’s raw parsing speed (Bison is only 4 to 5 times faster), but
DynGenPar is 11 times faster at converting the grammars to the format that can be used
for parsing (and that does not even include the time required to compile the C code Bison
outputs). The detailed results can be found in Section 7.1.1. One notable difference is
that the Bison version is in C and uses the C mode of Flex, whereas the DynGenPar
version is in C++ and uses the Flex lexers as C++ classes.
In both versions, formulas are parsed by a separate grammar. For the main Naproche
grammar, a formula is just a token. It is recognized as a token by the main lexer, using the
regular expression \$[^$]*\$ that matches dollar-enclosed strings. The lexer then passes
the whole string to the formula parser, which scans it using the dedicated formula lexer and
parses it using the dedicated formula grammar. The Naproche formula grammar accepts a
small controlled subset of LATEX corresponding to first-order logic, documented informally
in the Naproche wiki (Cramer & Kühlwein [18]). In the DynGenPar implementation,
the formula parser returns a parse tree, which is returned by the main token source in lieu
of the leaf node that would be usual for a token. This parse tree is then automatically
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attached to the main parse tree as a subtree in lieu of a leaf. This DynGenPar feature
is called hierarchical parsing (see Section 2.2.3.5). Note that this works differently in the
Bison implementation because it does not produce an explicit parse tree, but executes
actions on the fly.
The EBNF grammar for Naproche formulas used in my implementation is based on
the expression grammar pattern and on the informal documentation from Cramer &
Kühlwein [18]. It is reproduced below:
variable_symbol → m | n | t | u | v | w | x | y | z
constant_symbol → \emptyset | c | 0 | 1 | 2 | 3 | 4 | 5
function_symbol → f | f2 | g | h | * | + | ^ | ’ | succ | \cup | \cap
relation_symbol → = | \neq | < | > | \leq | \geq | \in | \subset | \supset | R | r | M | ord

| trans | contradiction
term → variable_symbol | constant_symbol | function_symbol ( term+ )

| ( term function_symbol term ) | term ’
atomic_formula → relation_symbol ( term* ) | term relation_symbol term | ( formula )
quantifier → \forall | \exists
quant_formula → atomic_formula | quantifier variable_symbol+ ( formula )
neg_formula → quant_formula | \neg neg_formula
logical_and → \wedge | \and
and_formula → neg_formula | and_formula logical_and neg_formula
logical_or → \vee | \or
or_formula → and_formula | or_formula logical_or and_formula
logical_implies → \rightarrow | \implies
implies_formula → or_formula | implies_formula logical_implies or_formula
logical_equivalent → \leftrightarrow | \equivalent
formula → implies_formula | formula logical_equivalent implies_formula
dollar_formula → $ formula $
The space, tab, newline, dot (.), colon (:), and comma (,) characters are treated as token
separators and otherwise ignored. No token is produced for those characters by the lexer.
The succ, ord, trans, and contradiction tokens are also accepted with the first letter
capitalized. The start category is dollar_formula.
The DynGenPar implementation of the Naproche grammar also demonstrates the pre-
diction functionality of DynGenPar (see Section 2.2.3.1). If the input is incomplete or
truncated, but can be completed to an error-free Naproche document, the valid possibili-
ties for the next token are enumerated to stderr. The proof of concept version does not
implement prediction for formulas or in the case of errors, but it would be possible to add
them if needed.
The output of the Naproche parser is a MATLAB script that produces the parse tree as
a record in Peter Schodl’s MATLAB implementation of the semantic memory. Nodes in
the parse tree are constructed using commands such as

node2 = mksentence(node1);
The details of the output format can be found in Schodl [84]. In the Bison imple-
mentation, parse actions directly write these constructor commands to stdout. In the
DynGenPar implementation, DynGenPar first builds the parse tree in memory. Subse-
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quently, that parse tree is walked to output the constructor commands to stdout. This
input format is no longer used by Concise, but since there was no immediate need to pro-
cess Naproche in Concise, the output of the Naproche parser has not yet been updated.
Alternatively, the DynGenPar version of the Naproche parser can also output the parse
tree in an indented plain-text representation designed to be human-readable.
The main test case for the Naproche parser was a first-order formulation of the Burali-
Forti paradox (Burali-Forti [10]), encoded in the Naproche language by Peter Schodl
(Schodl [84]). The reason a paradox was chosen as the test case is that paradoxes stress
the corner cases in logic, and therefore demonstrate the expressiveness of the language.
Peter Schodl’s MATLAB implementation of the semantic memory (Schodl [84]) is able to
automatically write the Naproche text from the internal semantic memory representation.
My Naproche parser can perform the opposite transformation.
In order to allow parsing LATEX documents containing Naproche text, I wrote a Perl
script to extract the text from the XML output of LaTeXML (Miller [67]), bringing
it into a plain-text format that the Naproche parser can handle. The original LATEX
document structure is not preserved. In addition, for convenience, a small shell script
runs LaTeXML (assumed to be installed system-wide), then my Perl script extracting the
text, and finally the Naproche parser. Those scripts were the initial prototype for the
TextDocument toolchain that allows reading LATEX documents into Concise, preserving
their document structure (see Section 6.2).
The DynGenPar implementation of the hierarchical Naproche grammar is included as an
example in the Open Source releases of DynGenPar. The Burali-Forti sample input is also
included, in the examples directory. In addition to the valid version of the sample input,
that directory also contains a deliberately erroneous version to test the error reporting
and a deliberately truncated version to showcase the prediction functionality.

6.2 The TextDocument Toolchain

This section describes a toolchain to automatically process complete LATEX documents
with Concise and DynGenPar, the TextDocument toolchain. The toolchain works by

1. converting the LATEX documents to XML (eXtensible Markup Language) using
LaTeXML (Miller [67]),

2. turning the XML into a Concise record (of type TextDocument) representing the
document structure, and

3. sending every paragraph to DynGenPar to convert the document structure record
to a semantic one, using a grammar such as BasicDefinitions (Section 6.3) or
BasicReasoning (Section 6.4).

In the first step, the toolchain uses LaTeXML 0.7.0 (Miller [67]) to generate an XML
representation closely reflecting the structure of the original LATEX. (For practical reasons,
the used copy of LaTeXML was frozen to a fixed version.) LaTeXML requires some infor-
mation about every LATEX stylesheet used in the document, to know how it should process
the macros. (Should it expand them? Should it produce some specific XML for them?)
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An extensive collection of such LaTeXML information for many common and not so com-
mon LaTeX stylesheets has been collected in the arXMLiv project (Stamerjohanns &
Kohlhase [90], Kohlhase & Ginev [60]). It can be checked out from https://svn.
kwarc.info/repos/arXMLiv/trunk/sty/. In order to avoid working on a moving target,
the TextDocument toolchain project settled on a snapshot (a checkout of the repository)
from October 3, 2010. That revision was verified to work with the LaTeXML 0.7.0 release.
Some semantic information that is needed later in the parsing step cannot be satis-
factorily expressed in terms of existing LATEX packages. Therefore, I wrote a custom
FMathL LATEX stylesheet (FMathL.sty) and a corresponding LaTeXML description
FMathL.sty.ltxml. This allows extending the LATEX language with custom macros that
can be handled in a special way by LaTeXML. FMathL.sty currently defines the following
macros, each taking one argument:

• \define: specifies a definition defining the term given as the argument. In LATEX,
this simply turns the argument bold. In LaTeXML, the macro puts the argument
into a special text class “define”. This preserves the information needed to create
dedicated “define” objects in the semantic representation built in the next step.

• \raw: specifies comments that should be left unparsed. In LATEX, this simply turns
the argument italic. In LaTeXML, the macro puts the argument into a special
text class “raw”. This preserves the information needed to create dedicated “raw”
objects in the semantic representation built in the next step.

• \email: specifies an e-mail address. Since e-mail addresses follow basically the
same formatting rules as URLs, it is common practice in LATEX to simply put the
e-mail address into a \url tag. However, this is bad in a semantic representation
because an e-mail address is in fact not, by itself, a valid URL. To turn an e-mail
address into a valid URL, mailto: must be prepended. That, however, is usually
unwanted in printed documents. The \email macro solves this dilemma. In LATEX,
it is simply equivalent to \url. In LaTeXML, mailto: is additionally prepended,
e.g., \email{foo@example.com} is equivalent to \url{mailto:foo@example.com}.

The second processing step uses two programs implemented by me to convert the output
of LaTeXML to a Concise record representing the document structure. Both programs are
implemented in C++ using the QtCore and QtXml libraries. The processxml tool is an
XML to XML transformation from the LaTeXML output format to the XML representa-
tion of a Concise record. Using XSLT (eXtensible Stylesheet Language Transformations)
(W3C [100]) for the task was considered, but imperative code turned out to be more
convenient in this case. The xmltocnr tool converts the record from the XML represen-
tation to the record sheet representation. The reason the conversion is implemented as
a two-step process, with two separate executables, is technical: processxml works using
the SAX (Simple API for XML) API, which walks the input from left to right and
triggers events when an opening or closing tag is encountered. This is fast, but producing
well-indented record sheets this way is tricky. xmltocnr walks the DOM (Document
Object Model) tree, an abstract syntax tree, of the input XML and outputs the record
sheet recursively, increasing the indentation with the recursion depth. The QtXml module
implements both APIs. The xmltocnr tool is also used when importing a type sheet into
Concise (see Section 4.1).

https://svn.kwarc.info/repos/arXMLiv/trunk/sty/
https://svn.kwarc.info/repos/arXMLiv/trunk/sty/
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The TextDocument type system, defined in the TextDocument.cnt type sheet, represents
the organizational structure of a LATEX document. A text document consists of the con-
tent in the form of an element list and of a layout. The layout field is currently not
used because my work focused on the content. The element list can contain any of the
following referenceable items (refItems) as elements:

• displays, created using the $$ command or the equation or eqnarray environments.
A display contains one or more formulas.

• verbatim environments.
• figures, created using the figure environment.
• (text) paragraphs. These are typically not inside any particular environment. (How-

ever, the quote environment is also considered a text paragraph.) Their contents
are detailed below. Note that the paragraph and subparagraph environments are
considered sections, not paragraphs. They can, and usually do, contain more than
one actual paragraph of text.

• tables, created using the table environment.
• (sub)sections, created using the chapter, section, subsection, subsubsection,

paragraph, or subparagraph environments. Each section contains an element list
that can contain lower-level sections, so that the document forms a tree of elements.

In addition, each element list may optionally contain a header, which must contain
a title and may contain an abstract, keywords, authors, a date, a copyright statement,
and a comment. All the fields except for the title are optional and can appear in any
combination. The element list may also optionally contain a trailer, which may contain
a bibliography and one or more indices. Both fields in the trailer are optional. For sections,
only the title in the header is used. All other header fields and the trailer are filled in by
processxml only for the top-level element list.
A paragraph can be in either an unparsed or a parsed (semantic) representation. The
TextDocument toolchain initially produces all paragraphs in the unparsed representation.
Then, a type sheet such as BasicDefinitions (Section 6.3) or BasicReasoning (Section
6.4) can be used to parse the paragraphs into a semantic representation defined by the
used type sheet. Only the unparsed representation is defined in the TextDocument type
sheet itself. It consists of a list of terms, which can be any of the following:

• a definition, marked up with the \define command defined in FMathL.sty (see
above).

• a raw comment that should not be parsed, marked up with the \raw command
defined in FMathL.sty (see above).

• a footnote, consisting of a paragraph.
• a reference (\ref), pointing to a referenceable item (see the list above).
• a citation (\cite), pointing to an entry in the bibliography.
• a newline.
• a word.
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• a mark, e.g., a punctuation mark. A mark can also be any other symbol that is not
a word or a formula.

• a formula, created using the $ command.
• a URL (Uniform Resource Locator, i.e., an Internet address).
• a text block of inline verbatim text, created using the \verb command.
• an inline figure, created using the \includegraphics command or the picture

environment outside of a figure environment.
• an inline table, created using the tabular environment outside of a table environ-

ment.
• an inline display, which can come up in quote paragraphs. The entire quote envi-

ronment is treated by LaTeXML as a paragraph. This also includes displays. In
contrast, for normal paragraphs, a display is treated by LaTeXML as a paragraph
delimiter and never considered part of the paragraph.

No semantic meaning is assigned to the terms in the unparsed paragraph. That is the
purpose of the semantic representations produced by parsing.
At the end of these two processing steps, the LATEX document is in the form of a Concise
record that can be imported into the semantic memory. That record fully represents the
structure of the LATEX document, while letting the contents in a mostly unprocessed form.
As explained above, paragraphs are left unparsed. Likewise, formulas are kept in their
LATEX string representation. (Only the transformations that LaTeXML applies are done.)
In the Concise GUI, the menu entry Read> LaTeX document automates the above two
processing steps, invoking the external executables of the TextDocument toolchain.
The third, and final, processing step, operates on the semantic memory and is fully
implemented within Concise. In that step, every paragraph and every formula is sent to
DynGenPar for parsing. As a result, the record is transformed from a record representing
only the document structure to a record representing both the structure and the semantics
of the document.
Currently, it is necessary to first parse the paragraphs and then, separately, the formulas.
A future version of the TextDocument toolchain shall use the hierarchical parsing feature
of DynGenPar (see Section 2.2.3.5) to do this as part of the parsing process, as is already
implemented in the Naproche parser (see Section 6.1).
The paragraphs are parsed one at a time using a type sheet such as BasicDefinitions
(Section 6.3) or BasicReasoning (Section 6.4). That type sheet specifies not only the
grammar, but also the resulting semantic representation. The type sheet is converted to
a Concise grammar only once, and the resulting grammar is reused for all the paragraphs.
Not only is this more efficient, but it also allows dynamic rule additions from a previous
paragraph (as done, e.g., in the BasicDefinitions grammar, see Section 6.3) to carry
over onto later paragraphs.
Concretely, a TextParagraphIterator walks the TextDocument record and returns the
object IDs of the unparsed paragraphs in the record, in document order. Each paragraph
is then sent to DynGenPar for parsing. There is, however a complication: The unparsed
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paragraphs are subrecords. DynGenPar, however, operates on a stream of tokens, not on
a record. Therefore, the paragraph records have to be linearized to a token stream first.
Linearizing a paragraph record to a stream of DynGenPar tokens is the task of the
ConciseTokenSource. In the simplest case, the paragraph is simply a linked list of
words and punctuation signs. Such a linked list trivially corresponds to a sequence of
tokens, which the ConciseTokenSource can return one after the other. However, a para-
graph can also contain items that require a more complex treatment. Therefore, the
TextDocument typesheet contains special tokensource usages (see Section 3.2) that tell
the ConciseTokenSource how to linearize each item type. The syntax of the usages is
given in Section 4.1.
The linearization done by the ConciseTokenSource differs from other linearization tasks
in Concise in that the required output is not text, but a sequence of tokens. The grammars
operating on TextDocument paragraphs are not scannerless, they operate on word tokens.
In addition, the tokens can have a value attached. (The attached value is typically an
object ID.) This is important because it allows retaining information that is not parsed,
such as formulas and comments, across the parsing process. The object ID of the subrecord
that should be copied verbatim is attached to the token by the ConciseTokenSource. The
object ID remains attached to the token in the parse tree produced by DynGenPar. During
the generation of the resulting record, the object ID is retrieved from the token, and the
object it identifies is attached to the correct location in the output record. What tokens
should be output and with what value (if any) is encoded in the usages through the usage
function #!out, detailed in Section 4.1. The function takes, as a required parameter, the
ID of the token to output and, as an optional parameter, the ID of the value to attach to
it.
The ConciseTokenSource linearizes the item types in paragraphs as follows:

• A definition is initially linearized as a special token DEFINE, with the object ID of
the concept being defined attached as a value. However, it is treated specially by a
token hook, as explained below.

• A raw comment is linearized as a special token RAW, with the object ID of the
comment attached as a value.

• A footnote is currently treated as if its contents were part of the text of the para-
graph.

• A reference is linearized as a special token REF, with a pair, consisting of the object
ID of the referenced item and of the external ID of the optional label string, attached
as a value.

• A citation is linearized as a special token CITE, with a pair, consisting of the object
ID of the referenced item and of the external ID of the optional label string, attached
as a value.

• A newline is ignored, i.e., it produces no token at all.

• A word is a token by itself. Its token ID is the external ID of the external of type
UniqueString representing the word.
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• A mark is a token by itself. Its token ID is the external ID of the external of type
Character representing the mark.

• A formula is linearized as a special token FORMULA, with the external ID of the
string representation of the formula (without the enclosing dollar signs) attached as
a value.

• A URL is linearized as a special token URL, with a pair, consisting of the external
ID of the referenced URL and of the object ID of the optional label (a paragraph),
attached as a value.

• A verbatim text block is linearized as a special token TEXTBLOCK, with the external
ID of external of type String representing the text block attached as a value.

• An inline figure is currently ignored, i.e., it produces no token at all.
• An inline table is currently ignored, i.e., it produces no token at all.
• An inline display is linearized as the sequence of formulas composing it, i.e., a

sequence of one or more FORMULA tokens, with the external ID of the string repre-
sentation of the formula (without the enclosing dollar signs) attached as a value.

A special feature of the ConciseTokenSource is that it allows installing a token hook, a
method that is called for every encountered token and that can act on them and modify
them before they are returned to DynGenPar. Currently, there is exactly one such token
hook, which is always enabled. That token hook processes the special DEFINE token. If
that token is encountered:

1. The attached value is retrieved. It is the object ID of the concept being defined.
The concept is of the same type as a paragraph, i.e., a list of paragraph items.

2. The concept is linearized into a stream of tokens by using another
ConciseTokenSource instance on it.

3. The resulting stream of tokens is converted to a string.
4. That string is converted to an external of type Name, the name of the concept.
5. A new rule is added to the grammar, which derives, from the special category

Name, the stream of tokens produced in step 2. The rule label is an object of type
ExternalNameBuilder (see Section 3.2), producing the name of the concept. Thus,
if the grammar accepts the category Name, any further appearance of the stream of
tokens defining the concept will be recognized as the name of the concept. If the
grammar does not reference the category Name, the added rule has no effect.

6. Finally, instead of the original DEFINE token, a NEWCONCEPT token is returned, with
as attached value the name of the concept. NEWCONCEPT is a different token than
DEFINE because NEWCONCEPT has an external Name attached, whereas DEFINE has
a paragraph object attached. For this to work, the grammar must accept the
NEWCONCEPT token. Otherwise, a parse error is produced.

The BasicDefinitions grammar from Section 6.3 uses this feature.
DynGenPar is run on the token stream produced by the ConciseTokenSource, using the
grammar previously chosen for the document. The resulting parsed record is a semantic
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representation of the paragraph. It is attached to the TextDocument record in lieu of the
original unparsed paragraph.
The above parsing of paragraphs was initially implemented in a test program called
LaTeXTest. It is now also available from the Concise GUI, by right-clicking on a record
of type TextDocument and choosing the Edit> Record> Parse paragraphs menu entry.
Parsing the formulas is currently only implemented in the LaTeXTest test program. It
is planned to add it to the user interface once the LaTeXFormulas grammar (see Section
6.5) is sufficiently finalized. However, as previously mentioned, the ultimate goal is to not
require a separate formula parsing step at all, but to use the hierarchical parsing feature
of DynGenPar (see Section 2.2.3.5) to do this as part of parsing the paragraphs.
The LatexTest test program can optionally send all formulas in the TextDocument record
to an instance of DynGenPar using the formula grammar from Section 6.5. In order to
do so, it uses a TextFormulaIterator that walks the entire TextDocument record and
returns the object IDs of every formula found, in the order of appearance in the document.
Both unparsed and parsed paragraphs are supported. Respecting the order of appearance
in a parsed paragraph relies on order usages in the type sheet that defines the parsed para-
graphs. For linked lists (as found in unparsed paragraphs), the TextFormulaIterator
defaults to walking in the natural list order (next field last), which is usually the expected
ordering. For other types, if no order usage is given, the order is arbitrary. The con-
tents of \raw comments are ignored. In particular, formulas contained in them are not
returned for parsing. This complies to the intent of the \raw tag. Each formula found by
the TextFormulaIterator is sent to DynGenPar, and the result is stored in the formula
object in addition to the original string representation.
It is planned to allow the user to select the formula grammar to use for parsing. In that
way, both sTEX (Kohlhase [59]) (using a formal language grammar that is yet to be
written) and a subset of the traditional LATEX formula syntax (using the grammar from
Section 6.5) can be accepted as input. It will also allow customizing the formula grammar
for specific applications.

6.3 BasicDefinitions – A Proof of Concept for
Dynamic Rule Additions through Mathematical
Definitions

This section describes a Concise type sheet that serves as a proof of concept for the
handling of mathematical definitions, called BasicDefinitions. The BasicDefinitions
type sheet was the first type sheet aiming at implementing functionality required to parse
natural language. It has been written cooperatively by Arnold Neumaier, Ferenc Domes,
and me. Its main feature is that definitions encountered automatically trigger a hook in
the token source that dynamically adds a rule at runtime. Unlike the OptProbl grammar
(see Section 4.5) that also dynamically adds rules to the grammar (through parse actions,
see Section 2.2.3.4), the BasicDefinitions grammar is implemented within the Concise
framework and operates on TextDocument (see Section 6.2) paragraphs.
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Unlike the Naproche grammar documented in the previous section, the
BasicDefinitions grammar operate neither on raw text, nor on raw LATEX. Instead, it
operates on a paragraph in the Concise TextDocument (see Section 6.2) representation.
Unparsed paragraphs are represented there essentially as a linked list of words.
Therefore, the BasicDefinitions grammar does not need a classical lexer as its token
source. Instead, a special token source, the ConciseTokenSource, walks the linked list
of words and returns each word to DynGenPar as a token. Thus, the BasicDefinitions
grammar operates on word tokens. The ConciseTokenSource is described in more
details in Section 6.2.
The static part of the BasicDefinitions grammar covers just enough idiomatic mathe-
matical English to represent basic mathematical definitions. The most complex sentence
the grammar was tested with is a sentence defining a table:

A table A with rows R and columns C (short: an R×C table) associates
with every row i ∈ R and every column k ∈ C the entry Aik.

The text printed in bold is marked up with the \definemacro declared in the FMathL.sty
style sheet (see Section 6.2). The whole expression “R × C table” is enclosed in a single
\define macro.
The BasicDefinitions grammar represents a parsed paragraph as a linked list of sen-
tences. Every sentence is either a comment, marked up with the \raw macro declared
in the FMathL.sty style sheet (see Section 6.2), or one of three kinds of definitions. By
design, comments are not parsed. Thus, their contents remain stored in the unparsed
paragraph format. Note that a comment may actually consist of multiple natural lan-
guage sentences, but is treated as one logical sentence.
The grammar initially knows only two built-in concepts: object and statement. Any
additional concept has to be defined in the input text through a mathematical definition.
The following three kinds of definitions are recognized:

1. definition, e.g.: A domain D associates with every object x a statement x ∈ D.

2. phraseDef, e.g.: If x ∈ D we say that x is in D.

3. formulaDef, e.g.: In place of x ∈ P we also write P (x).
In the examples, the text in bold is marked up with the \define macro.
Formulas are not parsed by the BasicDefinitions grammar. They are treated as one
token that has the LATEX string representation attached. That string representation is
kept unchanged in the output. However, the formulas can be sent to the grammar for
LATEX formulas (see Section 6.5) in a subsequent separate parsing step.
New rules are added to the grammar whenever a term enclosed in the \define macro is
encountered. The term can consist of more than one word, e.g., \define{new concept}.
It is assumed to be a new term: defining the same term again will create an ambiguous
rule. Once the term is defined, it will be recognized as a concept by the new rule, so all
further uses of the term need not, and in fact must not, be marked up with \define.
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The \define macro is represented by a special “define” object in the semantic memory,
which produces a special DEFINE token in the ConciseTokenSource (see Section 6.2).
Therefore, there is no need for parse actions (see Section 2.2.3.4) to recognize the defini-
tion, it can be done directly at token level. For this purpose, the ConciseTokenSource
allows installing a token hook, a method that is called for every encountered token and
that can act on them and modify them before they are returned to DynGenPar.
The token hook is not specified in the BasicDefinitions type sheet. Instead,
it is hardcoded in the Java code of Concise itself. It is installed by the
concise.parser.Grammar class documented in Section 3.2. The token hook acts on
tokens with the special ID DEFINE. (Actually, strictly speaking, the ID is an integer: the
external ID of the UniqueString external "DEFINE".) Any other tokens are returned to
DynGenPar unchanged. If a DEFINE token is encountered, the following steps are
performed:

1. The value attached to the token is retrieved. It is also an integer: the object ID
of the entry in the concept field of type paragraph of the define object. This
corresponds to the text passed as a parameter (within the curly braces) to the
\define LATEX macro. It is of type paragraph because it can contain more than
one word, and even other tokens that can occur in a paragraph, such as formulas.

2. A string is formed from the contents of that concept. E.g., for \define{new
concept}, the string "new concept" is built. That string is converted to the ex-
ternal type Name, and the ID of the resulting external is retrieved.

3. A rule is added to the grammar that detects the paragraph tokens from
step 1 as a Name, e.g., Name → new concept. The attached rule label is an
ExternalNameBuilder (see Section 3.2) that produces the name from step 2. This
rule ensures that the tokens from step 1, whenever they are encountered again
following the definition, produce the name from step 2. Such a Name is one of the
types of concepts accepted by the BasicDefinitions grammar.

4. Finally, instead of the DEFINE token that has an unparsed paragraph attached,
the token hook returns a NEWCONCEPT token with the ID of the name attached.
Such a token is recognized by the parser usages of the newConcept type in the
BasicDefinitions type sheet, which is also one of the types of concepts accepted
by the BasicDefinitions grammar.

Therefore, the definition of a term is represented as a newConcept record that has the
actual concept name attached as a field, any further references to the defined term simply
refer to the name directly.
There is limited support for definitions containing formulas, e.g. \define{$x$ is in
$D$}. In that case, the name contains the raw LATEX text of the formula, including the
enclosing dollar signs, e.g. $x$ is in $D$. Unfortunately, it is rendered in text views
exactly in this form. An even bigger issue is that the content of the formulas is not
currently looked at, e.g., anything matching the token sequence FORMULA is in FORMULA
will be recognized as the concept $x$ is in $D$. This implies that the actual variable
names are lost, e.g., “y is in C” will be stored as $x$ is in $D$ as well, the actual
formulas (i.e., the values attached to the FORMULA token recognized as part of a concept)
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are not currently stored. An even more elaborate example, which also appears in the test
input, is \define{$R \times C$ table}. In that case, the formula actually needs to be
parsed to recognize the parameters R and C, and pattern matching should be done to
avoid false matches. Neither is done at this time. Hence, currently, something like “M
table” would be incorrectly accepted as matching this definition. It is planned to address
these issues and fully support parametrized concept definitions in the future. It was not
possible to do this so far because the formula grammar (see Section 6.5) had to be written
first.
The BasicDefinitions grammar was designed with the goal to augment it over time to
be able to represent more and more mathematical definitions. The plan is to do this inter-
actively by making use of DynGenPar’s incremental properties. The combination of that
extended BasicDefinitions grammar and a grammar for common mathematical idioms,
such as the BasicReasoning grammar that will be presented in the next section, shall
ultimately form the FMathL (Neumaier [70]) language, the future controlled natural
language for mathematics.
For his master thesis, Andreas Pichler has developed a Concise type sheet based
on BasicDefinitions called ConceptsFromLatex (Pichler [73]). The
ConceptsFromLatex type sheet extends the BasicDefinitions grammar, enabling
Concise to parse a text that introduces matrix calculus. In addition to the elementary
definitions supported by BasicDefinitions, which cover basic set theory and tables,
Pichler’s ConceptsFromLatex type sheet adds types of definitions and statements that
allow conveniently defining semirings, natural numbers, and matrices on semirings. The
details of the ConceptsFromLatex grammar can be found in Pichler [73].

6.4 BasicReasoning – A Concise Grammar based on
MathNat

This section describes a work-in-progress Concise type sheet for basic mathematical rea-
soning. The type sheet is based on the MathNat (Humayoun & Raffalli [41], Hu-
mayoun [40, 39]) language, originally implemented in the Grammatical Framework (GF)
programming language by Muhammad Humayoun.
The initial language research for the FMathL project (Neumaier [70]) was done by Peter
Schodl and Arnold Neumaier on the latter’s lecture notes on Analysis and Linear Algebra
in German (Neumaier [69]). They produced a preliminary BNF grammar for the text
sentences in the Neumaier [69] lecture notes, without considering the formulas. That
work is outside of the scope of this thesis, but can be read in Schodl & Neumaier [85].
The next step of research was then aimed at obtaining a production grammar. The target
language in this case was English. Arnold Neumaier and I evaluated several possible ways
of achieving that goal. Humayoun’s existing MathNat language looked very promising to
us. Therefore, we decided to base our next grammar on MathNat.
Due to previous unsuccessful attempts at interfacing the Concise framework with GF (see
Section 5.5), Arnold Neumaier and I implemented a version of MathNat as a Concise type
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sheet. The grammar was not taken from the source code in MathNat in the GF language,
but from the document Humayoun [38]. That document contains the English text of
the mathematical idioms in clear text, whereas it is hidden behind an abstract API (the
GF resource grammar API) in the GF source code. E.g., Humayoun [38] contains table
rows such as

Function Type Explanation
MkHIfProve CmnStmnt -> ThmStmnt prove [that] CmnStmnt.

that map directly to the Concise type sheet notation

ThmStmnt:
union> ..., MkHIfProve, ...

MkHIfProve:
allOf> #x1:claim=CmnStmnt
#l> prove &[that&] #x1.

Although BasicReasoning is a working type sheet, the corresponding grammar is not yet
complete. For one, the lack of funding for this part of the project shifted the priorities
to tasks closer to goals that funding was obtained for. Moreover, we had decided that
the user interface allowing interactive incremental rule addition should be completed first.
The plan is to extend the grammar incrementally as new constructs are encountered in
the input, via the insights gained from our own language research. It shall ultimately be
merged with the BasicDefinitions grammar from the previous section and combined
with the LATEX formula grammar from the next section to form the FMathL (Neumaier
[70]) language, the future controlled natural language for mathematics.

6.5 A Grammar for LATEX Formulas

This section describes a Concise type sheet that parses LATEX formulas in natural nota-
tion. The goal is to parse formulas written the way a mathematician typically writes them,
without requiring special semantic markup such as sTEX (Kohlhase [59]). The gram-
mar is not unambiguous by design, because natural formula notation has some inherent
ambiguities.
Prior attempts at semantically parsing LATEX require writing the LATEX in a way that can
be easily and unambiguously parsed. Approaches include:

• requiring a notation known from programming languages, where, e.g., multiplication
always uses the * operator – I implemented that concept myself in the OptProbl
grammar (see Section 4.5) and in the Naproche formula grammar (see Section 6.1),
or

• defining dedicated LATEX macros that (ideally) expand to the usual notation for
rendering, but carry semantic markup – an example of that approach is sTEX
(Kohlhase [59]).
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The big drawback of those approaches is that, by restricting the allowed LATEX input,
they are not able to parse the formulas in mathematicians’ existing LATEX source files
without manually converting them all. A tool to automatically or semi-automatically
(interactively) convert existing LATEX formulas to the semantic notation would be desired,
but such a tool can also only exist if a parser for existing LATEX formulas is available. Of
course, the authors of LATEX extensions such as sTEX hope that authors will eventually
get used to them and write their formulas directly in them, but this will only happen once
those extensions have caught on, so a transition plan is needed in the meantime.
Therefore, I implemented, as a Concise type sheet, a grammar for LATEX formulas in the
notation in which mathematicians typically write them in their papers. For instance,
the type sheet deliberately allows implied multiplication, even though there are several
cases where it is inherently ambiguous. By design, not all ambiguities are resolved during
parsing. Some of them can be resolved in a later stage through semantic analysis, if only
one of the syntactically valid interpretations also makes sense semantically. Only the
remaining ambiguities must be resolved interactively by the user.
The original plan in Concise was to use DynGenPar only for the natural-language parts
of mathematical texts and to leave the formulas to an external parser. The hierarchical
parsing functionality of DynGenPar (see Section 2.2.3.5) would also have accomodated
such a design. David Langer worked on parsing LATEX formulas for his diploma thesis
(Langer [63]). He produced a parser in C++ based on a simple lexer for LATEX tags,
on the shunting-yard parsing algorithm, and on postprocessing on the parse trees. The
details of his algorithm are outside of the scope of this thesis and can be found in Langer
[63]. I cleaned up the implementation, integrated the documentation from the diploma
thesis into the source code, and translated it into English. I then produced Java bindings
using the binding generator SWIG (Beazley [8], Fulton et al. [32]) and integrated
them into Concise for testing. I picked SWIG rather than Qt Jambi in this case because
the C++ code uses the C++ standard template library (STL), not Qt classes. Unfor-
tunately, the testing uncovered several weaknesses in the implementation, which were
ultimately due to the limitations of the shunting-yard algorithm: some of the test cases
that were expected to parse did not actually parse successfully, some produced incorrect
parse trees because the postprocessing was unable to fix the bad parse trees coming out
of the shunting-yard algorithm. Therefore, it was decided to try using the more power-
ful parsing algorithm DynGenPar already available in Concise. While DynGenPar was
not originally designed for formulas, it supports a strict superset of the grammars sup-
ported by the shunting-yard algorithm: DynGenPar supports all context-free grammars
and some additional extensions, while the shunting-yard algorithm supports only a subset
of context-free grammars.
The plan was thus changed to keep the concepts of the lexing algorithm from Langer
[63], but to replace the implementation of the lexer and the complete parsing step. David
Langer’s implementation of the lexer requires to read in the entire input string first, and
then performs several transformation steps on the entire list of tokens. I implemented a
new lexer (called FormulaTokenSource) that operates incrementally on the input and
performs the same transformations on the fly. This is more efficient and allows resuming an
interrupted parsing process interactively. However, of course, interrupting and resuming
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within a token will not work as expected. The revised plan was also discarded, because
of the complexity introduced by the lexer: in particular, the conversion of the type sheet
to a DynGenPar grammar (see Section 3.2) would have had to take the new token source
into account.
The implementation that was finally successful is a scannerless grammar, i.e., using char-
acter tokens. It is implemented in the LaTeXFormulas.cnt type sheet. The FormulaTo-
kenSource is not used. The scannerless approach does not support transformations such
as converting $\mathbb{Q \subset R}$ to $\mathbb{Q} \subset \mathbb{R}$ (both
render as Q ⊂ R), but the Concise team agreed that such a transformation is not needed
and that the former, semantically incorrect, version need not be accepted. The big ad-
vantage of the scannerless approach is its simplicity. To match LATEX tags correctly, the
same trick based on next token constraints as in the OptProbl grammar (see Section 4.5)
is used: the lexical category ##tagend matches either the empty string when not followed
by a tag character (which would be part of the tag) or by a whitespace character (be-
cause that whitespace must be consumed as per the LATEX syntax rules), or a nonempty
whitespace sequence (which is consumed).
The core of the grammar is based on the expression grammar pattern. Most formulas are
expressions of some type. Initially, I attempted to distinguish between different kinds of
expressions: statements (boolean expressions), numeric expressions, and set expressions.
Unfortunately, it turned out that such a distinction does not work out well. For sim-
ple expressions such as x or P (x), it cannot be determined without surrounding context
whether they are booleans, numbers, or even sets. For sets, there is additionally the pos-
sibility to do elementwise arithmetic, such as 2N or −N, which would require duplicating
all the relevant arithmetic operators for both expressions and sets. Therefore, I decided
to have a single expression grammar, and to leave type analysis and elimination of parses
that do not make sense when considering the types to a subsequent semantic analysis, to
be implemented in the near future.
Operator priorities. This implies that there is a global list of operator priorities, which
required careful tuning to fit mathematicians’ expectations. In order of decreasing priority,
the operators are as follows:

1. atomic expressions: parenthesized or LATEX-brace-enclosed expressions, variables,
constants (including set constants), function calls, tuples, vector or matrix sub-
scripts, intervals, braced sets (enumerated, e.g., {x, y, z}, or defined by a condition,
e.g. {x ∈ R | x > 0}) expressions grouped by LATEX tags (\frac, \sqrt, \binom,
\overline, \bar), absolute values and norms, and the ellipsis (treated as a special
constant or variable),

2. powers and other postfixes: factorials, superscripts (treated as the exponent of
a power), superscript (adjoint) or subscript (cumulation point) asterisks, prime,
double prime, and triple prime,

3. nabla expressions: directional derivatives, gradients, divergences, and curls, when
denoted with the nabla (∇) symbol,

4. functor calls, i.e., function calls that do not require explicit parentheses, only a
prefix functor: \sin, \cos, \tan, \cot, \sec, \csc, \sinh, \cosh, \tanh, \coth,
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\arcsin, \arccos, \arctan, \exp, \ln, \log, \lg, \arg, \det,
5. simple products: dot product (·), cross product (×), asterisk product (∗), implied

multiplication, slash division (/)
6. special products: wedge (∧) and circle (◦) operators
7. summations and similar expressions: limits (including lim inf and lim sup), Σ sums,

Π products, ⋂ intersections, ⋃ unions, integrals
8. simple sums: unary and binary versions of +, −, ±, and ∓,
9. ranges in MATLAB syntax: start : end or start : increment : end,
10. set complements, i.e., the set difference operator \,
11. set intersections (∩),
12. set unions (∪),
13. equality, inequality, and divisibility relations: =, >, <, ≥, ≤, 6=, ≈, ⊂, ⊃, ⊆, ⊇, (,

), |,
14. element containment statements: ∈, /∈,
15. boolean not (¬),
16. boolean and (∧),
17. boolean or (∨),
18. implications (⇒, ⇐),
19. equivalences (⇔),
20. quantifier expressions: ∀, ∃, ∃!,
21. global operator expressions: the \choose operator, which is semantically the same

as \binom, but must be parsed with a completely different priority to match the
behavior of LATEX.

At this stage, no attempt is made at determining precise semantics, such as whether a
\binom or \choose is actually a binomial coefficient (as both macro names would imply)
or just a two-element vector. That issue is addressed further down in this section.
A construct that frequently appears in mathematicians’ common usage is informal lists:
comma-separated lists that are typically a shortcut for repeating the formula, once for
every term in a list. An example is the x, y in x, y ∈ R. A challenge is that the list can
appear at different priority levels in the expression, e.g., the same formula can equivalently
be written as x ∈ R, y ∈ R. In principle, such an informal list could appear at any of the
priority levels above, but that would introduce a tremendous amount of ambiguity. Thus,
as a compromise, I looked closely at several examples to decide on the priority levels at
which best to allow such lists. I determined two suitable levels:

• the level of simple products (level 5), allowing, e.g., 2x, 3y ∈ N, and of course
anything with higher priority (levels 1 to 4), hence this also covers the x, y ∈ R
example, and

• the level of complete expressions (level 21), covering the other example x ∈ R, y ∈ R.
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Since the grammar, for the reasons explained above, does not distinguish between boolean
and numeric expressions, x, y ∈ R is ambiguous at syntactic level (x could also be a com-
plete expression). Semantic type analysis is needed to discard the incorrect alternative.
There are, however, cases that are genuinely ambiguous even if semantic analysis is done,
such as a < x, y < b, which could mean either “a < x < b and a < y < b” or “a < x
and y < b”. Some ambiguities are eliminated by restricting expressions to non-lists in
some contexts, e.g., expressions in contexts that are inherently lists, such as tuples, must
not themselves be informal lists. But the aforementioned ambiguous examples cannot be
disambiguated in that way.
Common LATEX usage also includes various forms of whitespace in formulas. There is both

• invisible whitespace, i.e., whitespace in the LATEX source code that is not rendered
in the output, and

• visible whitespace, i.e., LATEX directives producing whitespace in the output.
The LaTeXFormulas grammar allows invisible whitespace almost everywhere. In most
places (e.g., around operators), visible whitespace is also permitted. Both are currently
ignored completely. That implies the assumption that the whitespace has no semantic
meaning. For invisible whitespace, this is almost always the case. Visible whitespace can
actually have a meaning depending on the context, which is not currently recognized.
E.g., often, an expression within parentheses, preceded by wide whitespace, is either an
explanatory comment or a condition rather than an implicitly multiplied expression or
a function call argument. The current grammar mistakenly treats it as implied multi-
plication and/or as a function call. Handling the semantics of whitespace constitutes a
potential future extension to the grammar. The \displaystyle formatting directive is
also treated as visible whitespace because it behaves essentially the same way. It cannot
be treated as invisible whitespace because the latter is allowed between the _ character
and the subscript or between the ^ character and the superscript, but \displaystyle is
not.
The start category of the LaTeXFormulas grammar is a linked list of formulas, corre-
sponding to a comma-separated list in the input. Every formula is one of the :

• An expression, as per the expression grammar defined above. The expression cannot
be an informal list as a whole (because the list is already treated by the linked list
of formulas), but may of course contain informal lists.

• A continued relation, i.e., a special relation expression where the left hand side is
missing (assumed to come either from the line above or from informal text). The
relation starts with the relation operator, any relation operator except |.

• A definition, of the form lhs := rhs.
• A function declaration, of the form function : domain → range.
• A convergence statement, of the form var → towards. It can semantically also

be an incomplete function declaration domain → range or an incomplete function
definition var → value.

The biggest difficulty with parsing natural LATEX notation is that it is inherently ambigu-
ous. Even frequently used constructs can be ambiguous, e.g.:
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• Is a(x+ 1) an implied multiplication or a function call?
• Is A12 the matrix subscript A1,2, or is A a vector and A12 its twelfth element, or is

it the twelfth row or column of the matrix A?
• Is Aij the matrix subscript Ai,j or the vector subscript Ai·j (with implied multipli-

cation)?
• Is x ∧ y a wedge product or a boolean AND? This must be distinguished at the

syntactic level because they have very different priorities.
• The typical notation for absolute values and norms is ambiguous because it does

not distinguish between the opening and closing tag. E.g., does |xy| − |x||y| mean
abs(x ·y)−abs(x) ·abs(y) or abs(x ·y ·abs(− abs(x)) ·y)? The “divides” relation can
introduce additional ambiguities in some cases. E.g., the example can be parsed
syntactically as abs(x · y divides − abs(x) divides y), but in this case, a type
analysis will be able to reject the absolute value of the relation chain.

Other constructs, even frequently used ones, that look clear at the syntactic level have
ambiguous or unclear semantics, e.g.:

• Is xi an exponentiation (x to the ith power) or a superscript index (the ith element
of the vector x)?

• Is f ′ the derivative of f or just a different function or variable that may or may not
be directly related to f?

• Is
(
x
y

)
, written as either $\binom{x}{y}$ or $x \choose y$, a binomial coefficient

or a column vector with two elements?
• What exactly does x∗ mean? Most commonly, it is some form of conjugate or

adjoint (e.g., the conjugate transpose of a complex vector), but the notation can
have several other meanings.

• Is sin2 x the common shorthand for (sin x)2 or does it stand for the iterated sine
sin(sin x)?

By design, the LaTeXFormulas grammar does not attempt to resolve these ambiguities
at the syntactic level. For the ambiguities requiring a syntactic distinction (those in the
first of the above lists), both (or in general, all) possible parse trees are returned. For
the ambiguities in the second list, one parse tree is returned, but no attempt is made
at determining the precise semantics during the parsing step. In both cases, the correct
semantics must be determined by a later processing step.
In the current implementation, any ambiguities produced by the parser must be interac-
tively resolved by the user. Several of them could, however, be automatically resolved by
a semantic analysis. Automated disambiguation techniques planned to be implemented
in the near future include:

• type analysis: If it can be determined, e.g., that a is a scalar constant, then it is
clear that a(x+ 1) cannot be a function call and thus is an implied multiplication.

• document-specific notational preferences, to be specified globally by the user: E.g.,
a paper or book on boolean logic will not contain any wedge products, and thus
x ∧ y is necessarily a boolean AND.
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Those techniques can also be useful in combination, e.g., if A is known to be a matrix,
and if the notational preferences do not allow the Ai notation for the row Ai,: (the ith
row of A), it follows that A12 and Aij must be matrix subscripts. They can also be used
to give clear semantics to constructs with unclear semantics such as f ′.
For any ambiguities that remain after the semantic analysis (i.e., currently, all that the
parser produced), all alternative parse trees are stored in the semantic memory. Be-
fore performing any further transformations that rely on an unambiguous parse tree, the
ambiguities must be resolved interactively. (If that is not done, it is undefined which
of the alternatives is the primary alternative seen by ambiguity-unaware postprocessing
steps.) This interactive resolution can be done through the Concise text view. The text
view displays a text representation of a Concise record, in this case, of a formula. The
text.EN.write usage is used to produce the text. If a portion of the text is ambigu-
ous, that portion is highlighted in red. The displayed text corresponds to the primary
alternative, which is picked arbitrarily by the parser, but that is typically not an issue
because the output is usually the same ambiguous text as the input. Clicking on the
highlighted text selects it and opens a popup in which one of the alternatives can be cho-
sen. To let the user know which is which, the alternatives are linearized using a dedicated
disambiguation.EN usage designed to produce unambiguous output. Ambiguities can
also be nested. In that case, the ambiguous portion will be highlighted in red even in the
popup, and linearized using the usual text.EN.write usage that leaves it deliberately
ambiguous. However, clicking on the nested ambiguity does not open a nested popup.
An example of such a popup is shown in Figure 6.1. Clicking on an alternative from the
popup deletes all other alternatives for this ambiguity from the record in the semantic
memory, so that any further processing sees only the selected alternative, and refreshes
the text view. Thus, the resolved ambiguity is no longer highlighted. Nested ambiguities
are kept and become highlighted and clickable in the text view, allowing the user to also
resolve them.

Figure 6.1: Disambiguation popup from the Concise text view

To test the formula parser, I extracted the formulas from the LATEX manuscripts, which
were provided to me by the authors, of two real-world German text books (Neumaier
[69], Schichl & Steinbauer [83]). In both cases, the success rate was around 71%.
The detailed results are presented in Section 7.3.
Once the formula is parsed into a parser-oriented Concise record and the ambiguities re-
solved, it needs to be converted to an internal representation more suited for computation,
reasoning, and conversion to other formats. E.g., as all parser-oriented type systems, the
LaTeXFormulas type system treats variable references as strings containing the variable
name. In contrast, in the internal representation, variable references shall point directly
to a unique object representing the variable. In addition, in the internal representation,
all constructs must have clear semantics, e.g., f ′ must be represented differently if it is a
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derivative than if it is a separate function or variable name. An initial type system for
expressions suitable for computation and reasoning was designed by Peter Schodl. That
type system will have to be extended to cover all the concepts that the LaTeXFormulas
grammar can parse. For an early, very restricted, version of the LaTeXFormulas grammar,
I wrote a record transformation sheet called LaTeXFormulas.cnrt converting records in
the LaTeXFormulas type system to Peter Schodl’s type system for expressions. Work on
that record transformation sheet was put on hold, in order to focus on the grammar first,
and pending the design of the extended internal representation. It is planned to extend
it together with the type system for expressions.
As a final step, having the formula in an internal representation will allow the conversion
into one of many output formats. Suggested general output formats include

• sTEX (Kohlhase [59]), i.e., semantically marked up LATEX,
• the input syntax for computer algebra systems such as Mathematica or Maxima,

and
• code to evaluate the expression efficiently in a programming language.

Note that we do not perceive the LaTeXFormulas grammar as competition for sTEX.
There will always be a place for unambiguous semantic markup. By using the LaTeX-
Formulas grammar to convert legacy LATEX markup to sTEX semantic markup, the two
approaches will complement each other.
In addition to the above general output formats, for certain kinds of formulas and for
certain applications, specialized output formats are useful. In particular, for optimization
problems, it is planned to convert them to

• the RobustOptProb type system from Section 4.6,
• modeling languages: AMPL (Fourer et al. [27], AMPL Optimization inc. [2]),

GAMS (Brooke et al. [9], McCarl et al. [65], GAMS Development Corp.
[33]), Modelica (Mattsson et al. [64], Modelica Association [68]), and

• the DAG (directed acyclic graph) representations of GloptLab (Domes [24, 23])
and COCONUT (Schichl [82], Neumaier & Schichl [71]).

Implementing these output formats is planned once the internal representation and the
record transformation from the LaTeXFormulas type system to it are complete.
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Chapter 7

Conclusion: Performance Results,
Achievements, Extensions

This chapter wraps up the thesis by first presenting some practical results obtained with
DynGenPar, then summarizing what was achieved through DynGenPar, then proposing
possible future extensions.
The aim of this chapter is to evaluate how DynGenPar performs in practical settings,
in order to conclude the thesis with some practical results. The parsing speed of Dyn-
GenPar is measured in a few benchmarks and compared to the state of the art. Another
performance metric that is evaluated is the success rate on a set of practical inputs. That
obviously depends on the individual grammar. The grammar whose success rate is con-
sidered in this chapter is the LATEX formula grammar from Section 6.5, which is already
ready to be used on unmodified formulas from the LATEX manuscripts of two university-
level introductory mathematics text books.
The chapter is composed of five sections. The first section presents some performance
results for DynGenPar, first published in Kofler & Neumaier [56], but updated for
the current releases of the involved software. The results show that the performance is
competitive with the state-of-the-art parsers GNU Bison (Free Software Founda-
tion [28]). The comparison was performed on the Naproche grammar (Cramer et al.
[17], Koepke et al. [46]) (Section 6.1). The results also show that DynGenPar is com-
petitive with the Grammatical Framework (GF) (Ranta [77, 78], Ranta et al. [79]) on
the example grammar Phrasebook that is included in GF releases. The second section
discusses the performance of dynamic rule addition. It presents timings obtained on the
OptProbl (Section 4.5) and BasicDefinitions (Section 6.3) grammars. The third sec-
tion presents results obtained using the grammar for LATEX formulas (see Section 6.5)
on the complete collection of formulas in the original notation from two university-level
introductory mathematics textbooks (Neumaier [69], Schichl & Steinbauer [83]). It
shows the success rates of the grammar on those formulas. The fourth section summarizes
what was achieved through DynGenPar. Finally, the fifth section proposes some possible
future extensions to the algorithm and the implementation.
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7.1 Performance Benchmark

This section is based on Kofler & Neumaier [56], but the results presented below
are updated. The tests were repeated in April 2017 with the latest stable releases of the
parsing software and on newer hardware. All results reported below are from the April
2017 tests.
I performed two performance comparisons of DynGenPar with other state-of-the-art
parsers: a benchmark of DynGenPar against GNU Bison (Free Software Foun-
dation [28]) on a grammar for the Naproche language (Cramer et al. [17], Koepke
et al. [46]) (see Section 6.1), and a comparison of DynGenPar against the Grammatical
Framework (GF) (Ranta [77, 78], Ranta et al. [79]) on the GF Phrasebook example
grammar.

7.1.1 Benchmark of DynGenPar vs. Bison on the Naproche
Grammar

I compared the speed of my implementation to the well-established GNU Bison (Free
Software Foundation [28]) parser on the hierarchical (two-layer) grammar I devised
for the Naproche language (Cramer et al. [17], Koepke et al. [46]) (see Section 6.1):
There are 2 context-free grammars, one for text and one for formulas, each using a lexer
based on Flex (Flex Project [26]). In one version of my Naproche parser, the 2 context-
free grammars are processed with Bison 3.0.4 (using its support for GLR parsing), in the
other with DynGenPar release 10. I measured the times required to compile the code
to an executable (using GCC with -O2 optimization), to convert the grammar rules to
the internal representation (GLR tables for Bison, initial graphs for DynGenPar), and to
actually parse a sample input (representing the Burali-Forti paradox in Naproche). Note
that for Bison, the grammar conversion is done before the compilation, so, when working
with dynamically changing grammars, the compilation time also has to be considered,
whereas DynGenPar can convert grammars at runtime. My test machine was a desktop
computer with a Core i7-2600K (2 × 4 × 3.40 GHz) and 16 GiB RAM running Fedora
25 x86_64. Only one thread was used in the tests because the algorithms are single-
threaded. I used the system versions of GCC (6.3.1), Flex (2.6.0), and Bison (3.0.4). For
each measurement, I averaged the execution times of 100 tests and took the median of 3
attempts. My results are summarized in Table 7.1.

time compilation grammar conversion grammar update** parsing
Bison 1089 ms 153 ms* 1242 ms 1.60 ms
DynGenPar 8851 ms 5.34 ms 5.34 ms 9.37 ms***

ratio 8.1 0.034 0.0043 5.9
* . . . at compile time, thus requires recompilation
** . . . estimated total time to process a grammar update (includes recompilation for Bison)
*** . . . total execution time of 14.71 ms minus grammar conversion time

Table 7.1: Benchmarking results on the Naproche grammar (input: Burali-Forti paradox)
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I conclude that, while Bison is around 8 times faster at compilation and around 6 times
faster at pure parsing, DynGenPar is much faster at adapting to changed grammars.
The slower compilation of DynGenPar is not an issue because DynGenPar need not be
recompiled if the grammar changes. On the other hand, the time required to compile
modified grammars makes Bison entirely unsuitable for applications where the grammar
can change dynamically. Even if Bison were changed to allow loading a different LR table
at runtime, it would still take 29 times longer than DynGenPar to process my fairly small
two-layered grammar, and I expect the discrepancy to only grow as the grammar sizes
increase. (Moreover, DynGenPar can handle dynamic rule addition, so in many cases
even the 5.34 ms for grammar conversion can be saved. The performance of dynamic rule
additions is discussed in the next section.) In the worst case, where we have a new input
for an existing grammar and do not have the initial graph in memory, DynGenPar (14.71
ms) is still only 9 times slower than Bison (1.60 ms), even though the latter was optimized
specifically for this usecase and DynGenPar was not.

7.1.2 Benchmark of DynGenPar vs. the Grammatical Frame-
work (GF)

I also benchmarked my support for PGF grammar files (Angelov et al. [4]) produced
by the Grammatical Framework (GF) (Ranta [77, 78], Ranta et al. [79]) (see Section
5) against the software provided by the GF project itself. GF works by first compiling
grammars into the binary PGF format. Those PGF files are then loaded together with the
input into a program called thePGF runtime, which interprets such a PGF grammar and
serves as a parser for that grammar. DynGenPar, with its PGF support, acts like a PGF
runtime. Two other PGF runtimes are provided by the GF project itself: the original one
written in Haskell and a new runtime written in C. I benchmarked DynGenPar against
those two PGF runtimes. (I used DynGenPar release 11 and the GF 3.8 release.) As
an example grammar, I used GF’s Phrasebook example, which was the one explicitly
documented as being supported by the initial versions of GF’s C runtime, and which
I kept as the test case to be able to compare with my earlier results from Kofler &
Neumaier [56]. As input, I used the sample sentence See you in the best Italian restaurant
tomorrow!, a valid sentence in the Phrasebook grammar. (I also tried parsing with the full
English resource grammar, but DynGenPar would not scale to such huge grammars and
did not terminate in a reasonable time.) I measured the time to produce the syntax tree
only, without outputting it. The tests were run on the same Core i7 desktop computer
as above. Again, for each measurement, I averaged the execution times of 100 tests and
took the median of 3 attempts. My results are summarized in Table 7.2.
I conclude that DynGenPar is within an order of magnitude in speed compared to both
GF runtimes on practical application grammars.
Regarding the faithfulness of the grammar, note that, at the time of testing, both GF
runtimes incorrectly accepted the input Where is an restaurant? (should be a restaurant),
whereas DynGenPar can enforce the next token constraint. (My testing confirmed that
this known limitation of the GF runtimes still persists in GF 3.8.)
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parsing time
GF Haskell runtime 43.4 ms
GF C runtime 17.8 ms
DynGenPar 121.8 ms

Table 7.2: Benchmarking results on the GF Phrasebook grammar (input sentence: See
you in the best Italian restaurant tomorrow!)

Comparing to the older (2012) results from Kofler & Neumaier [56], one can see that
the newer releases of both the GF Haskell runtime and DynGenPar take longer on the GF
benchmark than the older releases that were tested in 2012, even on a faster computer.
This is because the Phrasebook grammar itself and the resource grammar it relies on
have changed, too. I have tried the current DynGenPar release 11 on the version of the
Phrasebook grammar (Phrasebook.pgf file) tested in 2012. It takes 66.7 ms on a Core
i7 at 3.40 GHz per core. Release 2 took 81 ms on a Core 2 Duo at 2.40 GHz per core
(Kofler & Neumaier [56]). Unfortunately, I cannot test the current GF runtimes on
the old Phrasebook grammar because the PGF format has changed. (DynGenPar still
also supports the old format version.) Recompiling the old source code of the Phrasebook
grammar with the current GF compiler to obtain a PGF file in the new format would also
not reproduce the same grammar because the resource grammar has changed significantly.

7.2 Performance of Dynamic Rule Addition

In order to evaluate the performance of dynamic rule addition, I made some performance
measurements on the OptProbl grammar from Section 4.5. As a sample input, I used the
simple input problem

\min (1/2)*x^{2}\\
\st x \in [-1,1]

and I prepended a variable number of dummy \newcommand commands of the form

\newcommand{test1}[0]{}
\newcommand{test2}[0]{}
\newcommand{test3}[0]{}
...

to it. Each \newcommand command adds two rules to the grammar. I measured the time
required to parse the input and produce an output DAG in the COCONUT format. (The
output DAG was always the same because the defined dummy commands are not used
anywhere.) My test machine was a desktop computer with a Core i7-2600K (2 × 4 ×
3.40 GHz) and 16 GiB RAM running Fedora 25 x86_64. Only one thread was used in the
tests because the algorithm is single-threaded. I used the system version of GCC (6.3.1).
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number of \newcommand commands 0 1 10 100 1000
no rule addition (\newcommand ignored) 10 ms 11 ms 16 ms 80 ms 2166 ms
dynamic rule addition 10 ms 11 ms 20 ms 116 ms 2462 ms
(DynGenPar release 11)
dynamic rule addition 10 ms 11 ms 22 ms 307 ms 15310 ms
(DynGenPar release 10)
rule addition with full regeneration of 10 ms 11 ms 23 ms 338 ms 16064 ms
the initial graph

Table 7.3: Parsing times on the OptProbl grammar, using a simple test problem with a
variable number of dummy \newcommand commands prepended, comparing two versions
of DynGenPar (release 10 vs. release 11)

For each measurement, I averaged the execution times of 100 tests and took the median
of 3 attempts. My results are summarized in Table 7.3.
The only difference between the older, slower DynGenPar release 10 and the newer, faster
DynGenPar release 11 is that I modified the method performing dynamic rule addition.
(Therefore, in Table 7.3, the results for dynamic rule addition are given for both versions,
whereas the other cases were measured only with release 11.) In release 10, the cache of
neighborhoods (as defined in Section 2.1.2) was completely cleared when a rule was added.
This made the dynamic rule addition itself really fast (often less than 10 microseconds),
but the overall performance was hurt by the recomputation of the neighborhoods. In
release 11, the dynamic rule addition now performs a quick check whether a cached
neighborhood needs to be invalidated. Only neigborhoods that need to be invalidated
are removed from the cache. This significantly improves the overall performance, up to a
factor of 6.22 in the largest tested instance (1000 \newcommand commands).
One can compute from the numbers in Table 7.3 that the dynamic addition of a rule can
be done in about 150 to 200 microseconds, whereas regenerating the initial graph and
all caches takes up to 14 milliseconds per instance. (In my test, the initial graph was
regenerated only once for both rules in each \newcommand command.) The larger the
grammar grows, the longer it takes to regenerate the initial graph and the neighborhoods.
That explains why the average time to rebuild the initial graph and the neighborhoods
is only around 0.7 milliseconds for 10 \newcommand commands, around 2.6 milliseconds
for 100 \newcommand commands, and around 13.9 milliseconds for 1000 \newcommand
commands. In the last case, the dynamic rule addition is almost 50 times faster (because
the rules are added in pairs, 100 times otherwise).
I also made some performance measurements on the BasicDefinitions grammar from
Section 6.3. As a sample input, I created a simple LATEX document skeleton with a single
section containing a variable number of paragraphs of the form

A domain1 D associates with every object x a statement x ∈ D.

where the term in bold is marked up as a definition using the \define macro (see Section
6.2) and where the number is incremented each time: domain1, domain2, domain3,
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etc. In the case with zero definitions (and only in that case), since the TextDocument type
system does not allow empty sections, the section contains a dummy paragraph consisting
of an empty raw comment (see Section 6.2): \raw{}.
Each definition adds a rule to the grammar. As explained in Section 6.2, every paragraph
is parsed to a separate parse tree, but additions to the grammar are retained from one
paragraph to the next. Thus, the grammar grows incrementally with each encountered
definition. I measured the time required to process all paragraphs, i.e., iterating over the
paragraphs and, each time:

1. parsing the input record (unparsed paragraph),
2. producing an output record (parsed paragraph), and
3. replacing the input record with the output record in the TextDocument record.

My test machine was the same Core i7 desktop computer as above. I used the DynGenPar
release 11 Java bindings on a development snapshot of Concise and the system version of
Java (OpenJDK 1.8.0_121-b14). Again, for each measurement, I averaged the execution
times of 100 tests and took the median of 3 attempts. My results are summarized in
Table 7.4.

number of definitions 0 1 10 100 1000
parsing time 7 ms 9 ms 31 ms 228 ms 2298 ms

Table 7.4: Parsing times on the BasicDefinitions grammar, using a simple synthetic
test document containing a variable number of definitions

From the last two results, one can extrapolate that the combination of parsing a paragraph
of the form given above and adding a rule to the grammar takes only approximately 2.3
milliseconds altogether. The scalability to 1000 definitions is significantly better than in
the OptProbl case because no long lists are built in this case. Instead, each paragraph
produces a separate parse tree. Therefore, only the grammar grows linearly with the
number of definitions, the parse trees do not.

7.3 Test Results on Real-World LATEX Formulas

In Section 6.5, I presented a Concise type sheet for LATEX formulas in natural notation.
To test the resulting DynGenPar grammar on real-world formulas, I extracted the list of
all formulas from the LATEX manuscripts, which were provided to me by the authors, of
the German text books

• ALA (Analysis und lineare Algebra, Neumaier [69]), covering the first year con-
tent of real analysis and linear algebra courses in typical European undergraduate
mathematics curricula, and

• Einf (Einführung in das mathematische Arbeiten, Schichl & Steinbauer [83]), a
general introduction to university-level mathematics for first-semester mathematics
students.
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Multiple instances of the exact same formula have been deleted, so all formulas are unique
in the final two lists.

ALA

unambiguous
42.4%

ambiguous
28.6% failed

29.0%

Einf

unambiguous
52.0%

ambiguous
19.8%

failed
28.2%

Figure 7.1: LaTeXFormulas success rates on ALA (left) and Einf (right)

The results are illustrated in Figure 7.1. For ALA, out of 9504 unique formulas, 4030
(42.4 %) were successfully parsed without ambiguities, 2715 (28.6 %) were successfully
parsed with ambiguities, and 2759 (29.0 %) failed to parse. Thus, 71.0% of the formulas
from ALA were successfully parsed, and of these, 59.7% were unambiguous. For Einf,
out of 5886 unique formulas, 3063 (52.0%) were successfully parsed without ambiguities,
1166 (19.8%) were successfully parsed with ambiguities, and 1657 (28.2%) failed to parse.
Thus, 71.8% of the formulas from Einf were successfully parsed, and of these, 72.4% were
unambiguous.
An example of an ambiguous formula is the expression |xy|−|x||y|. The resulting Concise
record representation of the parse tree is shown in Figure 7.2. One can see that there is
one ambiguity at the top level, and the absolute value expression in the second alternative
has itself two alternatives. This results in a total of three possible interpretations, namely:

1. \abs{x \impmul y}-\abs{x} \impmul \abs{y},

2. \abs{x \impmul y \impmul \abs{-\abs{x}} \impmul y}, and

3. \abs{x \impmul y \divides -\abs{x} \divides y}.
The notation used here is the one used by the text view for interactive disambiguation
(see Figure 6.1 in Section 6.5).
One can see that, while more work is needed to extend the grammar and to resolve
ambiguities, my current grammar already achieves a success rate of over 70%.
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Figure 7.2: Concise record for the ambiguous formula |xy| − |x||y|, showing the three
possible interpretations

7.4 Achievements

This thesis introduced DynGenPar, a dynamic generalized parser for common mathemat-
ical language. It presented its requirements, the basics of the algorithm and the tweaks
required for an efficient implementation. It then described several applications DynGen-
Par is already used for, both for formal languages and for controlled natural language
grammars, resulting in some important achievements.
The DynGenPar algorithm keeps efficiency by combining enough bottom-up techniques to
avoid trouble with left recursion with sufficient top-down operation to avoid the need for
states and tables. The initial graph ensures that the bottom-up steps never try to reduce
unreachable rules, which is the main inefficiency in existing tableless bottom-up algorithms
such as CYK (Kasami [43], Younger [101]). It can also be dynamically updated. This
allows dynamic rule changes. Conflicts are not fatal because the DynGenPar is exhaustive
and designed to keep its efficiency even in the presence of conflicts.
Through interaction with Concise, grammars can be imported at runtime. The grammars
are given as Concise type sheets, which are automatically converted to grammar rules
suitable for DynGenPar, which can then parse documents using the converted grammar.
Therefore, user-written rules can be fully read into the parser at runtime, rather than
hardcoding them as C++ or Java code or compiling them to some other precompiled
format. Concise type sheets represent a user-friendly mechanism for specifying rules
that can be easily converted to the DynGenPar internal representation. This feature is
thus an ideal showcase for the dynamic properties of DynGenPar. Concise type sheets
are typically scannerless grammars, thus DynGenPar has special support for scannerless
parsing. In particular, DynGenPar supports next token constraints, which can be used
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to express maximally-matched character sequences.
DynGenPar is the parser of choice in Concise. It is successfully used to parse several
formal languages. In particular, Concise type sheets are parsed using DynGenPar. There
is both a handwritten DynGenPar grammar in C++ that is used in practice because of
bootstrapping concerns and a Concise type sheet. The type sheet for type sheets can
bootstrap itself and passes bootstrap comparison, i.e., it can parse itself, the obtained
grammar can again parse itself etc., and the output from all stages corresponds. Concise
code sheets, the programming language in Concise, are also parsed with DynGenPar using
a Concise type sheet.
A commonly recurring task in Concise is to convert a record from one type system to an-
other. In particular, parsing with DynGenPar can only produce tree-structured records. It
is often desirable to produce an internal representation where variable names are replaced
by direct pointers to the actual variable objects. For this task, I designed a domain-
specific record transformation language and implemented it as a Concise type sheet. The
record transformation sheets are parsed with DynGenPar and executed by Concise.
Another formal language DynGenPar is successfully used on is ChemProcMod, a special-
ized modeling language for chemical processes designed to follow the conception of the
chemical engineer rather than of a mathematician or computer scientist. This makes
the ChemProcMod language significantly more convenient to use for this field of applica-
tion than a generic modeling language like Modelica (Mattsson et al. [64], Modelica
Association [68]).
I also implemented a DynGenPar grammar for a language I called robust AMPL as a
Concise type sheet. Robust AMPL is mainly a subset of the AMPL (A Mathematical
Programming Language) (Fourer et al. [27], AMPL Optimization inc. [2]) modeling
language for optimization problems. However, robust AMPL was extended to allow in-
tervals wherever AMPL normally expects a number. The accepted subset of the AMPL
language is growing over time. This allows inputting optimization problems into Concise.
When requested by the user, the input is done rigorously with outward rounding, a feature
not supported by the official AMPL implementation.
DynGenPar can also handle languages where rules are added to the grammar at runtime.
A formal language where this is the case was developed as a working proof of concept:
OptProbl. The OptProbl language is a subset of LATEX that supports \newcommand.
The DynGenPar-based OptProbl parsing application converts that input to a textual
DAG representation. The language demonstrates how dynamic rule addition, originally
designed for natural language, can also be put to practical use elsewhere.
The DynGenPar algorithm also supports a type of grammars that is not context-free: par-
allel multiple context-free grammars (PMCFGs) (Seki et al. [88]). This feature is used
in the implementation to import PGF (Portable Grammar Format) (Angelov et al. [4])
grammar files produced by the Grammatical Framework (GF) (Ranta [77, 78], Ranta
et al. [79]), a compiled representation of PMCFGs. A GF-compatible lexer is also pro-
vided. Thus, natural language grammars described in the GF language can be compiled
to PGF files using the GF compiler and reused with DynGenPar.
The ultimate target of DynGenPar research is natural language. Moving towards that
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goal, DynGenPar was used on a few controlled natural languages. The first such language
is Naproche (Cramer et al. [17], Koepke et al. [46]), a controlled natural language for
mathematical logic. The Naproche parser using DynGenPar is implemented using another
feature of the DynGenPar implementation: hierarchical parsing. There is a text parser and
a subordinate formula parser, both using Flex (Flex Project [26]) and DynGenPar. For
comparison, a version using two Bison (Free Software Foundation [28]) grammars
was also implemented. DynGenPar is only 6 to 8 times slower at raw parsing than Bison,
and several orders of magnitude faster at converting the grammar into something usable
for parsing.
Another controlled natural language parsed using DynGenPar is the BasicDefinitions
language, a Concise type sheet that serves as a proof of concept for the handling of
mathematical definitions. As in the OptProbl grammar, encountered definitions trigger
a parse action that dynamically adds a rule at runtime. Only, in this case, the added rule
defines a natural language term rather than a LATEX command.
Finally, a controlled natural language that is the subject of ongoing research is
BasicReasoning, a work-in-progress Concise type sheet for Humayoun’s MathNat
(Humayoun & Raffalli [41], Humayoun [40, 39]) language. The plan is to extend
that grammar incrementally via the insights gained from our own language research.
Most recently, the natural language parsing goals for DynGenPar were extended to include
not only text, but also formulas. (Originally, it was planned to delegate that task to a
dedicated formula parser by Langer [63], which never reached production level.) I
implemented a Concise type sheet to parse LATEX formulas in natural notation, the way a
mathematician typically writes them. The grammar is scannerless. I used the full power
of DynGenPar, including next token constraints (to correctly detect the end of a LATEX
tag) and PMCFG rules (to handle matched redundant braces without complicating the
resulting parse tree).
I also developed a TextDocument toolchain that leverages the existing LaTeXML (Miller
[67]) tool, Concise and DynGenPar to automatically process complete LATEX documents.
The toolchain 1. converts the LATEX input to XML using LaTeXML, 2. turns the XML
into a Concise record (of type TextDocument) representing the document structure, and
3. sends every paragraph to DynGenPar to convert the document structure record to a se-
mantic one, using a grammar such as BasicDefinitions or BasicReasoning. Optionally,
it can also send every formula to DynGenPar using the LATEX formula grammar.
The advancements made are also evidenced by a performance benchmark, showing that
the efficiency of DynGenPar compares favorably to the state of the art.

7.5 Future Extensions

There is still room for even more features, which will advance the state of the art further
towards the goal of computerizing a library of mathematical knowledge:

• context-sensitive constraints on rules: Currently, my implementation supports only
some very specific types of context-sensitive constraints, i.e., PMCFG constraints
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and next token constraints. I would like to support more general types of constraints,
and my algorithm is designed to accomodate that. The main research objective here
will be to figure out the class of constraints that is actually needed.

• stateful parse actions: Custom parse actions currently have access only to minimal
state information. I plan to make more state information available to parse actions
to provide as much flexibility as will be needed for the target applications.

• a runtime parser for rules: Reading rules into the parser from a user-writable for-
mat at runtime, rather than from precompiled formats such as machine code or
PGF grammars, is currently possible through the Concise GUI (Schodl et al.
[87], Domes [22]). I am considering implementing a mechanism for specifying rules
at runtime within DynGenPar. However, this has low priority for the FMathL
project because in that application we use the mechanism provided by Concise.

• scalability to larger PMCFGs: Currently, I have several optimizations which improve
scalability, but they only apply in the context-free case. In order to be able to process
huge PMCFGs such as the resource grammars of the Grammatical Framework, I
need to find ways to improve scalability also in the presence of constraints.

• error correction: At this time, DynGenPar only has basic error detection and re-
porting: A parse error happens when a shifted token is invalid for all pending parse
stacks. I would like to design intelligent ways to actually correct the errors, or
suggest corrections to the user. This is a long-term research goal.

My hope is that the above features will make it easy to parse enough mathematical text
to build a large database of mathematical knowledge, as well as adapting to a huge variety
of applications in mathematics and beyond (Kofler & Neumaier [56]).
There are several applications of DynGenPar and Concise that can be envisioned in the
future. In particular, having a semantic representation of the mathematical documents
allows building a semantics-aware search engine for Mathematics. Some existing algo-
rithms, e.g. MathWebSearch (Kohlhase & Sucan [61]), come very close to semantics-
awareness for formulas (that have to be input in a formal language such as MathML
(W3C [97])). Using tricks such as term substitution, they can find formulas that look
different at first sight, but have the same meaning. However, none of the existing meth-
ods even attempts to do the same for text. Representing the text semantically with the
help of DynGenPar will allow Concise to do exactly that. The representation can also
be exported to several formats, such as OMDoc (Open Mathematical Documents)
(Kohlhase [58]), an XML representation for whole documents using the more widely
known OpenMath (Buswell et al. [11]) XML format for formulas.
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Appendix A

The TypeSheets.cnt Type Sheet

This appendix reproduces the source code of the grammar for type sheets described in
the thesis in Section 4.1. It is itself given in the form of a Concise type sheet (see Section
4.1).
For a quick reading of the type sheet, you can at first skip the lines starting with a # sign.
The type sheet is complete and consistent even without those lines.
The lines starting with a # sign are usages (see Sections 3.2 and 4.1). They provide
additional information complementing the type system, such as grammatical information
used by DynGenPar. See Section 3.2 for details about the different types of usages.
Additional examples of type sheets annotated with usages for DynGenPar can be found
in Kofler & Neumaier [57] and Kofler & Baharev [51].

TypeSheets(English,TypeSheets)::ExternalTypes.String, ExternalTypes.Integer

! Type sheets
! -----------
!
! Arnold Neumaier and Kevin Kofler
!
! May 22, 2017
!
! This is a grammar for annotated type sheets, including a specification
! of both the lexical and the context free part.
!
! Initially, the (#t #tr) part of this grammar had to be encoded by hand
! in the cnttoxml converter. Now, the parser can be fed with info created
! from typesheets already read, so the grammar is now reproducible
! automatically from the present type sheet. However, in practice, we
! still rely on cnttoxml for practical bootstrapping reasons.
!
! View info is specified by productions.
! Literal productions are global to the type system and follow a line
! consisting only of a colon : (and optional comments).
! Categorical productions are local to a category and follow the type
! definition of that category.
!

141
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!
! Within productions (only), the exclamation mark !, the hash #,
! the ampersand &, the newline characters and the blanks are escaped,
! since they have syntactic meaning in the grammar for the type sheet.
! &! encodes the exclamation mark, and &# encodes the hash #.
! &n encodes a newline. &b encodes a blank, &t encodes a tab, and &c encodes a
! backspace.
! &0, ..., &9 encode strings consisting of 0, ..., 9 ampersands, each
! of which is fed to the parser as an individual token.
! Both &0 and && followed by a newline denote the empty string.
!
! regular expression syntax:
! &[...&] is optional.
! &(...&) appears once.
! &{...&} appears n times, n>=0.
! &<...&> appears n times, n>=1.
! &| separates alternatives in a pattern.
! Note that the ampersands before the brackets or | may not be missing,
! since otherwise the symbol is treated as a character!
!
! syntax for lexical matching conditions:
! &^ accepts preceding single-character pattern match iff the following
! pattern doesn’t match the same character (set difference)
! This consumes both patterns.
! &E accepts preceding pattern match iff the following single-character
! pattern matches the next character ("expect" constraint), otherwise
! the pattern fails to match entirely (i.e. this fails the entire
! rule unless there’s another &| alternative which matches)
! This consumes the preceding pattern only.
! &T accepts preceding pattern match iff the following single-character
! pattern does not match the next character ("taboo" constraint),
! otherwise the pattern fails to match entirely (i.e. this fails the
! entire rule unless there’s another &| alternative which matches)
! This consumes the preceding pattern only.
! &+ maximally extends preceding pattern of the form &{#char&} or
! &<#char&>, where #char is a single-character pattern.
! Single-character patterns may contain any EBNF (regular expression
! syntax and variable references), but no further &^, &E, &T or &+.
!
! special syntax:
! &=&(pattern&) encodes the external ID (<0) of the external value ’pattern’
!
! syntax for variables:
! #fieldName - jump to the entry referenced by the field of name ’fieldName’
! and process the usage information for the new object.
! The special word ’&this’ is not allowed as a fieldName.
! #>fieldName - the name of entry referenced by the field of name
! ’fieldName’, or the value in case the entry is an
! external object. The fieldName ’&this’ is used for
! referencing the source handle
! #=fieldName - the id of entry referenced by the field of name
! ’fieldName’ (<0 for external objects). The fieldName
! ’&this’ is used for referencing the source handle
! ##name - reference of a literal variable of name ’name’
!
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! syntax for functions:
! #!name&( a list of patterns separated by the &, separator &)
! calls a function of name ’name’ with arguments separated by &,
! The currently available functions are listed in ExternalFunctions.cnp.
!
! We use a special convention for specifying irregular concrete syntax
! for linked lists. This is indicated by a hash # in place of a
! production rule, expressing that the composition info for a linked
! list is at the calling field.
!
! Then the productions are defined in the category declaration whose
! entries are the head of the linked list. The corresponding productions
! are translated to context-free productions (as always) by replacing
! different categorical variables by different metavariables, but
! the object identified as corresponding to a categorical variable is
! stored not (as otherwise) in the entry of the position determined by
! the field but as entry in the linked list starting at that position.
!
! The objects are entered in the order from left to right; a new link is
! begun whenever the current link has the recognized position already
! filled.
!
! Example: Consider the pair of declarations
!
! CapList:
! allOf>entries=CapLink
! #t>> #entries=&(#cap&[ and #cap&]&|#cap, &<#cap, &>and #cap&)
!
! CapLink:
! allOf>cap=Capital
! optional> next=CapLink
! #t> #
!
! The # in the last line indicates that CapLink is to be treated via the
! generic link structure, using a rule from CapList. This rule
! corresponds to the extended BNF rule
! E = CAP [ " and " CAP ] | CAP ", " CAP { CAP ", " } "and " CAP
! CAP = ? upper case letter ?
! where E, CAP are the context-free metavariables corresponding to
! #entries and #cap.
! The inputs
! (i) ’’A’’
! (ii) ’’A and B’’
! (iii) ’’A, B, C, and D’’
! result in parse trees where E has children corresponding to
! (i) A
! (ii) A, B
! (iii) A, B, C, D
! The resulting linked lists are
! (i) entries=$1, $1.cap=A
! (ii) entries=$1, $1.cap=A, $1.next=$2, $2.cap=B
! (iii) entries=$1, $1.cap=A, $1.next=$2, $2.cap=B, $2.next=$3,
! $3.cap=C, $3.next=$4, $4.cap=D
!
!
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! Example: Consider the pair of declarations
!
! CLList:
! allOf>entries=CLLink
! #t>> #entries=&{#cap&[ and #low,&]&}
!
! CLLink:
! allOf>cap=Capital
! optional> low=LowerCase
! optional> next=CLLink
! #t> #
!
! Now we get the extended BNF rule
! S = { CAP [ " and " LOW "," ] }
! CAP = ? upper case letter ?
! LOW = ? lower case letter ?
! where S, CAP, LOW are the context-free metavariables corresponding to
! #entries, #cap, and #low.
! The inputs
! (i) ’’A and x’’
! (ii) ’’ABC and x’’
! (iii) ’’A and x, B and y’’
! result in parse trees where S has children corresponding to
! (i) A, x
! (ii) A, B, C, x
! (iii) A, x, B, y
! The resulting linked lists are
! (i) entries=$1, $1.cap=A, $1.low=x
! (ii) entries=$1, $1.cap=A, $1.next=$2, $2.cap=B, $2.next=$3,
! $3.cap=C, $3.low=x
! (iii) entries=$1, $1.cap=A, $1.low=x, $1.next=$2, $2.cap=B, $2.low=y

! Target specification
!
! A target is a name for view info, and consists of a hash # followed by
! an identifier characterizing the kind of view, such as #t (used in
! this type sheet) for text view information.
! View info of kind #t, say, is defined in productions following lines
! starting with #t>> or #t>, depending on whether the production has
! or hasn’t an explicit left hand side.
! This view info is placed in
! secretary.library.views.#TS.#target
! where #TS is the name of the current type sheet (TypeSheets), and
! #target is to be substituted (before evaluation of the address from
! left to right) by the field sequence defined in the following
! specification. The same field sequence may have several targets,
! and a target may contribute to several field sequences.
! secretary.library.views.#TS.#target.label contains the label used to
! denote the kind of view (thus for the text view the letter t).
!
! New view info can be created by copying the type sheet and adding
! new targets; the old target info need not be repeated.
!
:TARGET> text.read=#t #tr ! text read view in #t> and #tr>
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text.write=#t #tw ! text write view in #t> and #tw>
completion.filters.EN=#cf ! completion filters in #cf>

:START=TypeSheet

! ##char denotes an arbitrary character. Among the characters are
! - the newline character, escaped as &n,
! - horizontal characters, collectively referred to as ##hchar
! - letters, collectively referred to as ##letter, and
! - digits, collectively refered to as ##digit.
!
! ##hchar can theoretically be defined as ##hchar=##char&^&n, but
! this leads to an unsupported nested context-sensitive constraint.
! These and some more basic literal variables are defined now:
:
#tr>> ##hchar=#[0-9, 11-12, 14-255] ! horizontal character (UTF-8)
#tw>> ##hchar=#[0-9, 11-12, 14-65535] ! horizontal character (UTF-16)
#cf>> ##hchar=Any character except newline
#t>> ##char=##hchar&|&n ! general character
#t>> ##letter=#[65-90, 97-122] ! Latin letter (upper- or lowercase)
#cf>> ##letter=Any letter
#t>> ##digit=#[48-57] ! Western "Arabic" digit
#cf>> ##digit=Any digit
#tr>> ##blanks=&{&b&}&+ ! zero or more blanks
#tw>> ##blanks=&0 ! nothing
#tr>> ##eol=##blanks&<&n&>&+ ! trailing blanks followed by newlines
#tw>> ##eol=&n ! single newline
#tr>> ##hascii=#[0-9, 11-12, 14-127] ! horizontal character (ASCII only)
#cf>> ##hascii=Any ASCII character except newline
#tr>> ##utf8s2=#[192-223] ! start byte of 2-byte UTF-8 sequence
#cf>> ##utf8s2=Any non-ASCII Unicode character
#tr>> ##utf8s3=#[224-239] ! start byte of 3-byte UTF-8 sequence
#cf>> ##utf8s3=Any non-ASCII Unicode character
#tr>> ##utf8s4=#[240-247] ! start byte of 4-byte UTF-8 sequence
#cf>> ##utf8s4=Any non-ASCII Unicode character
#tr>> ##utf8cont=#[128-191] ! UTF-8 continuation byte
#t>> ##line=&{##hchar&}&+ ! string not containing a newline
#t>> ##id=##letter&{##letter&|##digit&}&+ ! alphanumeric string starting with

! a letter
#t>> ##digits=&<##digit&>&+ ! string of all digits
#t>> ##foreignword=&<##hchar&^:&> ! colon-terminated string

! escape rules
:
#t>> ##outchar=##char&^"
#tr>> ##litchar=##hascii&^&(&!&|&#&|&1&|&b&)&|&&

##utf8s2##utf8cont&|&&
##utf8s3##utf8cont##utf8cont&|&&
##utf8s4##utf8cont##utf8cont##utf8cont

#tw>> ##litchar=##hchar&^&(&!&|&#&|&1&|&b&)
#t>> ##litchar=&1&!&"!"
#t>> ##litchar=&1&#&"#"
#t>> ##litchar=&1n&"
"
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#t>> ##litchar=&1b&" "
#t>> ##litchar=&1t&" "
#t>> ##litchar=&1c&"backspace"
#t>> ##litchar=&10&""
#t>> ##litchar=&11&"&"
#t>> ##litchar=&12&"&&"
#t>> ##litchar=&13&"&&&"
#t>> ##litchar=&14&"&&&&"
#t>> ##litchar=&15&"&&&&&"
#t>> ##litchar=&16&"&&&&&&"
#t>> ##litchar=&17&"&&&&&&&"
#t>> ##litchar=&18&"&&&&&&&&"
#t>> ##litchar=&19&"&&&&&&&&&"

! TypeSheet is the type of a handle containing a record encoding the
! result of parsing a type sheet
!
TypeSheet:
allOf> Header=Header

entries=EntryLink
optional> Targets=Targets
optional> StartCategory=StartCategory
optional> postComments=CommentLink
#t> #Header&[#Targets&]&[#StartCategory&]#entries&[##eol#postComments&]&[##eol&]

! The header declares which type system is defined, which imports are
! part of the declared type system, and contains an obligatory
! introductory comment explaining the type sheet
!
Header:
allOf> TypeSystem=Id

language=Id
authority=Id
comments=CommentLink

optional> imports=ImportLink
optional> translations=TranslationLink
#t> #TypeSystem(#language,##blanks#authority)::&&
&[&(##blanks&|##eol##blanks&)#imports&]##eol#comments&[#translations&]

! An identifier starts with a letter, followed by a (maximal) word
!
Id:
union> String
#t> ##id

! A positive integer
!
PosInt:
union> Integer
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#t> ##digits

! An identifier in a foreign language
!
ForeignId:
union> String
#t> ##foreignword

! Each link of a linked list of imports is an ImportLink
!
ImportLink:
allOf> TypeSystem=Id
optional> Category=Id

newName=Id
optional> next=ImportLink
#t> #TypeSystem&[.#Category&[->#newName&]&]&[,&(##blanks&|##eol##blanks&)#next&]

! Each link of a linked list of translations is a TranslationLink
!
TranslationLink:
allOf> language=Id

idTranslations=IdTranslationLink
optional> preComments=CommentLink
optional> next=TranslationLink
#t> ##eol&[#preComments&]:LANG:##blanks#language##blanks&n&&

#idTranslations&[#next&]

! Each link of a linked list of identifier translations is an IdTranslationLink
!
IdTranslationLink:
allOf> ForeignId=ForeignId

Id=Id
optional> next=IdTranslationLink
#t> ::#ForeignId:##blanks#Id##blanks&n&[#next&]

! Each link of a linked list of comments is a CommentLink
!
CommentLink:
allOf> Comment=Comment
optional> next=CommentLink
#t> #Comment&[#next&]

! Comments start with a nonescaped ! and optional blanks and ends with a
! nonescaped newline. Stored is only the string in between, without
! the leading blanks.
!
Comment:
allOf> text=Line
#t> ##blanks&!##blanks#text&n
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! A line is a string without newline characters
!
Line:
union>String
#t> ##line

! Targets
!
Targets:
allOf> targets=TargetLink
optional> preComments=CommentLink
#t> ##eol&[#preComments&]:TARGET>##blanks#targets

! Each link of a linked list of targets is a TargetLink
!
TargetLink:
allOf> Target=Target
optional> next=TargetLink
#t> #Target&[##blanks#next&]

! Target specifications
!
Target:
allOf> sequence=FieldLink

vars=VarLink
optional> comment=Comment
#t> #sequence=#vars&(#comment&|##blanks&n&)

! Each link of a linked list of fields is a FieldLink
!
FieldLink:
allOf> field=Id
optional> next=FieldLink
#t> #field&[.#next&]

! Each link of a linked list of variables is a VarLink
!
VarLink:
allOf> name=Id
optional> next=VarLink
#t> &##name&[&b#next&]

! Start category specification
!
StartCategory:
allOf> start=Id
optional> comment=Comment
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#t> :START=#start&(#comment&|##blanks&n&)

! Each link of a linked list of entries in the type system is an
! EntryLink
!
EntryLink:
oneOf> LitDef=LitDef

CatDef=CatDef
optional> next=EntryLink
#t> &(#LitDef&|#CatDef&)&[#next&]

! Literal variable definitions
!
LitDef:
allOf> productions=LitLink
optional> preComments=CommentLink
optional> postComments=CommentLink
#t> ##eol&[#preComments&]:&(#postComments&|##blanks&n&)#productions

! Each link of a linked list of literal productions is a LitLink
!
LitLink:
allOf> production=LitProduction
optional> next=LitLink
#t> #production&[#next&]

! Literal productions
!
LitProduction:
allOf> target=Id

field=Id
oneOf> Substitution=Substitution

production=AlternativeLink
cClass=CRangeLink

optional> comments=CommentLink
#t> ##blanks&##target>>&b&#&##field=#Substitution&(#comments&|##blanks&n&)
#t> ##blanks&##target>>&b&#&##field=#production&(#comments&|&n&)
#t> ##blanks&##target>>&b&#&##field=&#[#cClass]&(#comments&|##blanks&n&)

! A substitution in a literal production
!
Substitution:
allOf> input=CharLink
optional> output=OutCharLink
#t> #input&1"&[#output&]"

! A character range. If end is not specified, it is the same as start.
!
CRange:
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allOf> start=PosInt
optional> end=PosInt
#t> #start&[-#end&]

! A list of character ranges, encodes a character class in a literal production
!
CRangeLink:
allOf> CRange=CRange
optional> next=CRangeLink
#t> #CRange&[,##blanks#next&]

! Literal characters
!
Char:
union> String
#t> ##litchar

! Each link of a linked list of literal characters is a CharLink
!
CharLink:
allOf> Char=Char
optional> next=CharLink
#t> #Char&[#next&]

! Output characters
!
OutChar:
union> String
#t> ##outchar

! Each link of a linked list of output characters is an OutCharLink
!
OutCharLink:
allOf> OutChar=OutChar
optional> next=OutCharLink
#t> #OutChar&[#next&]

! An alternative in a pattern (same as ElementLink)
!
Alternative:
union> #e:ElementLink
#t> #e

! Each link of a linked list of alternatives is an AlternativeLink
! &| separates alternatives in a pattern.
!
AlternativeLink:
allOf> Alternative=Alternative
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optional> next=AlternativeLink
#t> #Alternative&[&1|#next&]

! Each link of a linked list of elements is an ElementLink
! This represents the sequence of elements in a single alternative.
!
ElementLink:
allOf> element=Element
optional> next=ElementLink
#t> #element&[#next&]

! Elements are the basic unit of a categorical production
!
! regular expression syntax
! &[...&] is optional.
! &(...&) appears once.
! &{...&} appears n times, n>=0.
! &<...&> appears n times, n>=1 .
!
Element:
oneOf> #e:CatVar=CatVar

#e:LitVar=LitVar
#e:literal=Char
#e:LitId=LitId
#e:Function=Function
#d:Blanks=Blanks
#d:LineBreak=LineBreak
optional=AlternativeLink
once=AlternativeLink
anyTimes=AlternativeLink
multiple=AlternativeLink

optional> match=MatchCase
#t> #e&[#match&]
#t> #d
#t> &1[#optional&1]&[#match&]
#t> &1(#once&1)&[#match&]
#t> &1{#anyTimes&1}&[#match&]
#t> &1<#multiple&1>&[#match&]

! Dummy element consisting only of blanks, acts as a silent separator
!
Blanks:
union> String
#t> &b##blanks&T&!

! Dummy element representing an escaped newline (&& + newline) used to
! break lines inside productions
!
LineBreak:
nothing>
#t> &2&n
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! Match cases store a lexical matching condition
!
! syntax for lexical matching conditions:
! &^ accepts preceding single-character pattern match iff the following
! pattern doesn’t match the same character (set difference)
! This consumes both patterns.
! &E accepts preceding pattern match iff the following single-character
! pattern matches the next character ("expect" constraint), otherwise
! the pattern fails to match entirely (i.e. this fails the entire
! rule unless there’s another &| alternative which matches)
! This consumes the preceding pattern only.
! &T accepts preceding pattern match iff the following single-character
! pattern does not match the next character ("taboo" constraint),
! otherwise the pattern fails to match entirely (i.e. this fails the
! entire rule unless there’s another &| alternative which matches)
! This consumes the preceding pattern only.
! &+ maximally extends preceding pattern of the form &{#char&} or
! &<#char&>, where #char is a single-character pattern.
! Single-character patterns may contain any EBNF (regular expression
! syntax and variable references), but no further &^, &e, &t or &+.
!
MatchCase:
union> #e:Maximal, #e:Expect, #e:Taboo, #e:Except
#t> ##blanks#e

! Match required to be maximal
! &+
Maximal:
union> String
#t> &1+

! Match requiring specific next characters
! &E
Expect:
allOf> pattern=Element
#t> &1E#pattern

! Match excluding specific next characters
! &T
Taboo:
allOf> pattern=Element
#t> &1T#pattern

! Match excluding specific characters
! &^
Except:
allOf> pattern=Element
#t> &1^#pattern
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! The different types of references to categorical variables.
! They all start with a single unescaped hash.
!
CatVar:
union> #e:CatVarRec, #e:CatVarName, #e:CatVarId
#t> &##e

! Regular references to categorical (meta)variables are denoted by an
! unescaped hash # followed by an alphanumerical string starting with
! a letter.
! They must be followed by an explicit &0 when the next character is a
! letter or a digit.
! All categorical variables are defined by the fields of a category and
! are locally valid only within the category in which they are defined.
!
CatVarRec:
allOf> name=Id
#t> #name

! #>fieldName - the name of entry referenced by the field of name
! ’fieldName’, or the value in case the entry is an
! external object. The fieldName ’&this’ is used for
! referencing the source handle.
! An empty name field corresponds to ’&this’, i.e. the source handle.
!
CatVarName:
optional> name=Id
#t> >&(#name&|&1this&)

! #=fieldName - the id of entry referenced by the field of name
! ’fieldName’ (<0 for external objects). The fieldName
! ’&this’ is used for referencing the source handle
! An empty name field corresponds to ’&this’, i.e. the source handle.
!
CatVarId:
optional> name=Id
#t> =&(#name&|&1this&)

! Literal (meta)variables are denoted by unescaped ## followed
! by an alphanumerical string starting with a letter.
! They must be followed by an explicit &0 when the next character is a
! letter or a digit.
! All other literal variables must be declared in productions that are
! globally valid within a typesystem.
!
LitVar:
allOf> name=Id
#t> &#&##name
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! &=&(pattern&) encodes the node ID of the external value ’pattern’
!
LitId:
allOf> pattern=ElementLink
#t> &1=&1(#pattern&1)

! A function argument (same as ElementLink)
!
FunArg:
union> #e:ElementLink
#t> #e

! A list of function arguments
! This differs from AlternativeLink in that the separator is &, rather than &|.
!
FunArgLink:
allOf> FunArg=FunArg
optional> next=FunArgLink
#t> #FunArg&[&1,#next&]

! A function call (see ExternalFunctions.cnp for the available functions)
! #!name&( list of function arguments &)
! The list of function arguments can be empty.
!
Function:
allOf> name=Id
optional> args=FunArgLink
#t> &#&!#name##blanks&1(&[#args&]&1)

! Categorical variable definition
!
CatDef:
allOf> Category=Id

specifications=SpecLink
optional> extends=Id

productions=CatLink
irregular=IrrLink
preComments=CommentLink
postComments=CommentLink

#t> ##eol&[#preComments&]#Category:&[&b#extends+&]&n&[#postComments&]&&
#specifications&[#productions&[#irregular&]&]

! Each link of a linked list of specifications is a SpecLink
!
SpecLink:
oneOf> Spec=Spec
optional> next=SpecLink
#t> #Spec&[#next&]
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! Specifications of fields or field types
!
Spec:
union> #s:AllOfSpec, #s:OneOfSpec, #s:SomeOfSpec, #s:OptionalSpec, #s:FixedSpec,

#s:OnlySpec, #s:SomeOfTypeSpec, #s:ItselfSpec, #s:ArraySpec,
#s:IndexSpec, #s:TemplateSpec, #s:NothingElseSpec, #s:NothingSpec,
#s:UnionSpec, #s:AtomicSpec, #s:CompleteSpec

#t> #s

! allOf qualifier (takes a list of equations)
!
AllOfSpec:
allOf> equations=EqLink
#t> allOf>##blanks#equations

! oneOf qualifier (takes a list of equations)
!
OneOfSpec:
allOf> equations=EqLink
#t> oneOf>##blanks#equations

! someOf qualifier (takes a list of equations)
!
SomeOfSpec:
allOf> equations=EqLink
#t> someOf>##blanks#equations

! optional qualifier (takes a list of equations)
!
OptionalSpec:
allOf> equations=EqLink
#t> optional>##blanks#equations

! fixed qualifier (takes a list of equations)
!
FixedSpec:
allOf> equations=EqLink
#t> fixed>##blanks#equations

! only qualifier (takes a list of equations)
!
OnlySpec:
allOf> equations=EqLink
#t> only>##blanks#equations

! someOfType qualifier (takes a list of equations)
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!
SomeOfTypeSpec:
allOf> equations=EqLink
#t> someOfType>##blanks#equations

! itself qualifier (takes a list of names)
!
ItselfSpec:
allOf> names=NameLink
#t> itself>##blanks#names

! array qualifier (takes a list of equations)
!
ArraySpec:
allOf> equations=EqLink
#t> array>##blanks#equations

! index qualifier (takes a list of equations)
!
IndexSpec:
allOf> equations=EqLink
#t> index>##blanks#equations

! template qualifier (takes the name of the template)
!
TemplateSpec:
allOf> name=Id
#t> template>##blanks#name##blanks&n

! nothingElse qualifier (takes no arguments)
!
NothingElseSpec:
nothing>
#t> nothingElse>##blanks&n

! nothing qualifier (takes no arguments)
!
NothingSpec:
nothing>
#t> nothing>##blanks&n

! union qualifier (takes a list of names)
!
UnionSpec:
allOf> names=NameLink
#t> union>##blanks#names
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! atomic qualifier (takes a list of names)
!
AtomicSpec:
allOf> names=NameLink
#t> atomic>##blanks#names

! complete qualifier (takes no arguments)
!
CompleteSpec:
nothing>
#t> complete>##blanks&n

! Each link of a linked list of equations is an EqLink
!
! The optional #name defines a local categorical variable to use in
! the concrete syntax instead of the #field which follows.
!
EqLink:
allOf> field=Id

Category=Id
optional> name=Id

comment=Comment
next=EqLink

#t> &[&##name:&]#field=#Category&(#comment&|##blanks&n&)&[##blanks#next&]

! Each link of a linked list of names is a NameLink
!
! The optional #name defines a local categorical variable to use in
! the concrete syntax instead of the #field which follows.
!
NameLink:
allOf> field=Id
optional> name=Id

next=NameLink
#t> &[&##name:&]#field&(,&(&b&|##eol##blanks&)#next&|&n&)

! Each link of a linked list of categorical productions is a CatLink
!
CatLink:
allOf> production=CatProduction
optional> next=CatLink
#t> #production&[#next&]

! Categorical production
! production is empty if it is declared as an IrrProduction elsewhere.
!
CatProduction:
allOf> target=Id
optional> production=AlternativeLink ! composition info is here

comments=CommentLink
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#t> ##blanks&##target>&b&(#production&(#comments&|&n&)&|&&
&#&(&b#comments&|##blanks&n&)&)

! Each link of a linked list of irregular productions is an IrrLink
!
IrrLink:
allOf> production=IrrProduction
optional> next=IrrLink
#t> #production&[#next&]

! Irregular productions define concrete syntax for irregular linked
! lists
!
IrrProduction:
allOf> target=Id

field=Id
production=AlternativeLink

optional> comments=CommentLink
#t> ##blanks&##target>>&b&##field=#production&(#comments&|&n&)



Appendix B

Internal Representation (BNF) of
the TypeSheets Grammar

Converting the type sheet TypeSheets.cnt (Appendix A) documented in Section 4.1
through the process from Section 3.2 yields the internal representation reproduced in text
form below. It is a grammar in the standard Backus-Naur form (BNF), with the following
extensions:

• Curly braces indicate rule labels (see Section 2.2.3.3), which are actually references
to the Java objects from Section 3.2.

• Square brackets indicate next token constraints (see Section 2.2.3.7).

Start category: TypeSheet
Token: SOH
Token: STX
Token: ETX
Token: EOT
Token: ENQ
Token: ACK
Token: BEL
Token: BS
Token: HT
Token: LF
Token: VT
Token: FF
Token: CR
Token: SO
Token: SI
Token: DLE
Token: DC1
Token: DC2
Token: DC3
Token: DC4
Token: NAK
Token: SYN
Token: ETB
Token: CAN

159



160 APPENDIX B. INTERNAL REPRESENTATION (BNF)

Token: EM
Token: SUB
Token: ESC
Token: FS
Token: GS
Token: RS
Token: US
Token: SP
Token: !
Token: "
Token: #
Token: $
Token: %
Token: &
Token: ’
Token: (
Token: )
Token: *
Token: +
Token: ,
Token: -
Token: .
Token: /
Token: 0
Token: 1
Token: 2
Token: 3
Token: 4
Token: 5
Token: 6
Token: 7
Token: 8
Token: 9
Token: :
Token: ;
Token: <
Token: =
Token: >
Token: ?
Token: @
Token: A
Token: B
Token: C
Token: D
Token: E
Token: F
Token: G
Token: H
Token: I
Token: J
Token: K
Token: L
Token: M
Token: N
Token: O
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Token: P
Token: Q
Token: R
Token: S
Token: T
Token: U
Token: V
Token: W
Token: X
Token: Y
Token: Z
Token: [
Token: \
Token: ]
Token: ^
Token: _
Token: ‘
Token: a
Token: b
Token: c
Token: d
Token: e
Token: f
Token: g
Token: h
Token: i
Token: j
Token: k
Token: l
Token: m
Token: n
Token: o
Token: p
Token: q
Token: r
Token: s
Token: t
Token: u
Token: v
Token: w
Token: x
Token: y
Token: z
Token: {
Token: |
Token: }
Token: ~
Token: DEL
Token: \x80
Token: \x81
Token: \x82
Token: \x83
Token: \x84
Token: \x85
Token: \x86
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Token: \x87
Token: \x88
Token: \x89
Token: \x8a
Token: \x8b
Token: \x8c
Token: \x8d
Token: \x8e
Token: \x8f
Token: \x90
Token: \x91
Token: \x92
Token: \x93
Token: \x94
Token: \x95
Token: \x96
Token: \x97
Token: \x98
Token: \x99
Token: \x9a
Token: \x9b
Token: \x9c
Token: \x9d
Token: \x9e
Token: \x9f
Token: \xa0
Token: \xa1
Token: \xa2
Token: \xa3
Token: \xa4
Token: \xa5
Token: \xa6
Token: \xa7
Token: \xa8
Token: \xa9
Token: \xaa
Token: \xab
Token: \xac
Token: \xad
Token: \xae
Token: \xaf
Token: \xb0
Token: \xb1
Token: \xb2
Token: \xb3
Token: \xb4
Token: \xb5
Token: \xb6
Token: \xb7
Token: \xb8
Token: \xb9
Token: \xba
Token: \xbb
Token: \xbc
Token: \xbd
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Token: \xbe
Token: \xbf
Token: \xc0
Token: \xc1
Token: \xc2
Token: \xc3
Token: \xc4
Token: \xc5
Token: \xc6
Token: \xc7
Token: \xc8
Token: \xc9
Token: \xca
Token: \xcb
Token: \xcc
Token: \xcd
Token: \xce
Token: \xcf
Token: \xd0
Token: \xd1
Token: \xd2
Token: \xd3
Token: \xd4
Token: \xd5
Token: \xd6
Token: \xd7
Token: \xd8
Token: \xd9
Token: \xda
Token: \xdb
Token: \xdc
Token: \xdd
Token: \xde
Token: \xdf
Token: \xe0
Token: \xe1
Token: \xe2
Token: \xe3
Token: \xe4
Token: \xe5
Token: \xe6
Token: \xe7
Token: \xe8
Token: \xe9
Token: \xea
Token: \xeb
Token: \xec
Token: \xed
Token: \xee
Token: \xef
Token: \xf0
Token: \xf1
Token: \xf2
Token: \xf3
Token: \xf4
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Token: \xf5
Token: \xf6
Token: \xf7
Token: \xf8
Token: \xf9
Token: \xfa
Token: \xfb
Token: \xfc
Token: \xfd
Token: \xfe
Token: \xff
Token: NUL
##blanks -> ##blanks#1 {TokenCollector}
##char -> ##hchar {TokenCollector}
| LF {TokenCollector}

##digit -> 0 {TokenCollector}
| 1 {TokenCollector}
| 2 {TokenCollector}
| 3 {TokenCollector}
| 4 {TokenCollector}
| 5 {TokenCollector}
| 6 {TokenCollector}
| 7 {TokenCollector}
| 8 {TokenCollector}
| 9 {TokenCollector}

##digits -> ##digits#1 {TokenCollector}
##eol -> ##blanks ##eol#1 {TokenCollector}
##foreignword -> ##foreignword#1 {TokenCollector}
##hascii -> NUL {TokenCollector}
| SOH {TokenCollector}
| STX {TokenCollector}
| ETX {TokenCollector}
| EOT {TokenCollector}
| ENQ {TokenCollector}
| ACK {TokenCollector}
| BEL {TokenCollector}
| BS {TokenCollector}
| HT {TokenCollector}
| VT {TokenCollector}
| FF {TokenCollector}
| SO {TokenCollector}
| SI {TokenCollector}
| DLE {TokenCollector}
| DC1 {TokenCollector}
| DC2 {TokenCollector}
| DC3 {TokenCollector}
| DC4 {TokenCollector}
| NAK {TokenCollector}
| SYN {TokenCollector}
| ETB {TokenCollector}
| CAN {TokenCollector}
| EM {TokenCollector}
| SUB {TokenCollector}
| ESC {TokenCollector}
| FS {TokenCollector}
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| GS {TokenCollector}
| RS {TokenCollector}
| US {TokenCollector}
| SP {TokenCollector}
| ! {TokenCollector}
| " {TokenCollector}
| # {TokenCollector}
| $ {TokenCollector}
| % {TokenCollector}
| & {TokenCollector}
| ’ {TokenCollector}
| ( {TokenCollector}
| ) {TokenCollector}
| * {TokenCollector}
| + {TokenCollector}
| , {TokenCollector}
| - {TokenCollector}
| . {TokenCollector}
| / {TokenCollector}
| 0 {TokenCollector}
| 1 {TokenCollector}
| 2 {TokenCollector}
| 3 {TokenCollector}
| 4 {TokenCollector}
| 5 {TokenCollector}
| 6 {TokenCollector}
| 7 {TokenCollector}
| 8 {TokenCollector}
| 9 {TokenCollector}
| : {TokenCollector}
| ; {TokenCollector}
| < {TokenCollector}
| = {TokenCollector}
| > {TokenCollector}
| ? {TokenCollector}
| @ {TokenCollector}
| A {TokenCollector}
| B {TokenCollector}
| C {TokenCollector}
| D {TokenCollector}
| E {TokenCollector}
| F {TokenCollector}
| G {TokenCollector}
| H {TokenCollector}
| I {TokenCollector}
| J {TokenCollector}
| K {TokenCollector}
| L {TokenCollector}
| M {TokenCollector}
| N {TokenCollector}
| O {TokenCollector}
| P {TokenCollector}
| Q {TokenCollector}
| R {TokenCollector}
| S {TokenCollector}
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| T {TokenCollector}
| U {TokenCollector}
| V {TokenCollector}
| W {TokenCollector}
| X {TokenCollector}
| Y {TokenCollector}
| Z {TokenCollector}
| [ {TokenCollector}
| \ {TokenCollector}
| ] {TokenCollector}
| ^ {TokenCollector}
| _ {TokenCollector}
| ‘ {TokenCollector}
| a {TokenCollector}
| b {TokenCollector}
| c {TokenCollector}
| d {TokenCollector}
| e {TokenCollector}
| f {TokenCollector}
| g {TokenCollector}
| h {TokenCollector}
| i {TokenCollector}
| j {TokenCollector}
| k {TokenCollector}
| l {TokenCollector}
| m {TokenCollector}
| n {TokenCollector}
| o {TokenCollector}
| p {TokenCollector}
| q {TokenCollector}
| r {TokenCollector}
| s {TokenCollector}
| t {TokenCollector}
| u {TokenCollector}
| v {TokenCollector}
| w {TokenCollector}
| x {TokenCollector}
| y {TokenCollector}
| z {TokenCollector}
| { {TokenCollector}
| | {TokenCollector}
| } {TokenCollector}
| ~ {TokenCollector}
| DEL {TokenCollector}

##hchar -> NUL {TokenCollector}
| SOH {TokenCollector}
| STX {TokenCollector}
| ETX {TokenCollector}
| EOT {TokenCollector}
| ENQ {TokenCollector}
| ACK {TokenCollector}
| BEL {TokenCollector}
| BS {TokenCollector}
| HT {TokenCollector}
| VT {TokenCollector}
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| FF {TokenCollector}
| SO {TokenCollector}
| SI {TokenCollector}
| DLE {TokenCollector}
| DC1 {TokenCollector}
| DC2 {TokenCollector}
| DC3 {TokenCollector}
| DC4 {TokenCollector}
| NAK {TokenCollector}
| SYN {TokenCollector}
| ETB {TokenCollector}
| CAN {TokenCollector}
| EM {TokenCollector}
| SUB {TokenCollector}
| ESC {TokenCollector}
| FS {TokenCollector}
| GS {TokenCollector}
| RS {TokenCollector}
| US {TokenCollector}
| SP {TokenCollector}
| ! {TokenCollector}
| " {TokenCollector}
| # {TokenCollector}
| $ {TokenCollector}
| % {TokenCollector}
| & {TokenCollector}
| ’ {TokenCollector}
| ( {TokenCollector}
| ) {TokenCollector}
| * {TokenCollector}
| + {TokenCollector}
| , {TokenCollector}
| - {TokenCollector}
| . {TokenCollector}
| / {TokenCollector}
| 0 {TokenCollector}
| 1 {TokenCollector}
| 2 {TokenCollector}
| 3 {TokenCollector}
| 4 {TokenCollector}
| 5 {TokenCollector}
| 6 {TokenCollector}
| 7 {TokenCollector}
| 8 {TokenCollector}
| 9 {TokenCollector}
| : {TokenCollector}
| ; {TokenCollector}
| < {TokenCollector}
| = {TokenCollector}
| > {TokenCollector}
| ? {TokenCollector}
| @ {TokenCollector}
| A {TokenCollector}
| B {TokenCollector}
| C {TokenCollector}
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| D {TokenCollector}
| E {TokenCollector}
| F {TokenCollector}
| G {TokenCollector}
| H {TokenCollector}
| I {TokenCollector}
| J {TokenCollector}
| K {TokenCollector}
| L {TokenCollector}
| M {TokenCollector}
| N {TokenCollector}
| O {TokenCollector}
| P {TokenCollector}
| Q {TokenCollector}
| R {TokenCollector}
| S {TokenCollector}
| T {TokenCollector}
| U {TokenCollector}
| V {TokenCollector}
| W {TokenCollector}
| X {TokenCollector}
| Y {TokenCollector}
| Z {TokenCollector}
| [ {TokenCollector}
| \ {TokenCollector}
| ] {TokenCollector}
| ^ {TokenCollector}
| _ {TokenCollector}
| ‘ {TokenCollector}
| a {TokenCollector}
| b {TokenCollector}
| c {TokenCollector}
| d {TokenCollector}
| e {TokenCollector}
| f {TokenCollector}
| g {TokenCollector}
| h {TokenCollector}
| i {TokenCollector}
| j {TokenCollector}
| k {TokenCollector}
| l {TokenCollector}
| m {TokenCollector}
| n {TokenCollector}
| o {TokenCollector}
| p {TokenCollector}
| q {TokenCollector}
| r {TokenCollector}
| s {TokenCollector}
| t {TokenCollector}
| u {TokenCollector}
| v {TokenCollector}
| w {TokenCollector}
| x {TokenCollector}
| y {TokenCollector}
| z {TokenCollector}
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| { {TokenCollector}
| | {TokenCollector}
| } {TokenCollector}
| ~ {TokenCollector}
| DEL {TokenCollector}
| \x80 {TokenCollector}
| \x81 {TokenCollector}
| \x82 {TokenCollector}
| \x83 {TokenCollector}
| \x84 {TokenCollector}
| \x85 {TokenCollector}
| \x86 {TokenCollector}
| \x87 {TokenCollector}
| \x88 {TokenCollector}
| \x89 {TokenCollector}
| \x8a {TokenCollector}
| \x8b {TokenCollector}
| \x8c {TokenCollector}
| \x8d {TokenCollector}
| \x8e {TokenCollector}
| \x8f {TokenCollector}
| \x90 {TokenCollector}
| \x91 {TokenCollector}
| \x92 {TokenCollector}
| \x93 {TokenCollector}
| \x94 {TokenCollector}
| \x95 {TokenCollector}
| \x96 {TokenCollector}
| \x97 {TokenCollector}
| \x98 {TokenCollector}
| \x99 {TokenCollector}
| \x9a {TokenCollector}
| \x9b {TokenCollector}
| \x9c {TokenCollector}
| \x9d {TokenCollector}
| \x9e {TokenCollector}
| \x9f {TokenCollector}
| \xa0 {TokenCollector}
| \xa1 {TokenCollector}
| \xa2 {TokenCollector}
| \xa3 {TokenCollector}
| \xa4 {TokenCollector}
| \xa5 {TokenCollector}
| \xa6 {TokenCollector}
| \xa7 {TokenCollector}
| \xa8 {TokenCollector}
| \xa9 {TokenCollector}
| \xaa {TokenCollector}
| \xab {TokenCollector}
| \xac {TokenCollector}
| \xad {TokenCollector}
| \xae {TokenCollector}
| \xaf {TokenCollector}
| \xb0 {TokenCollector}
| \xb1 {TokenCollector}
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| \xb2 {TokenCollector}
| \xb3 {TokenCollector}
| \xb4 {TokenCollector}
| \xb5 {TokenCollector}
| \xb6 {TokenCollector}
| \xb7 {TokenCollector}
| \xb8 {TokenCollector}
| \xb9 {TokenCollector}
| \xba {TokenCollector}
| \xbb {TokenCollector}
| \xbc {TokenCollector}
| \xbd {TokenCollector}
| \xbe {TokenCollector}
| \xbf {TokenCollector}
| \xc0 {TokenCollector}
| \xc1 {TokenCollector}
| \xc2 {TokenCollector}
| \xc3 {TokenCollector}
| \xc4 {TokenCollector}
| \xc5 {TokenCollector}
| \xc6 {TokenCollector}
| \xc7 {TokenCollector}
| \xc8 {TokenCollector}
| \xc9 {TokenCollector}
| \xca {TokenCollector}
| \xcb {TokenCollector}
| \xcc {TokenCollector}
| \xcd {TokenCollector}
| \xce {TokenCollector}
| \xcf {TokenCollector}
| \xd0 {TokenCollector}
| \xd1 {TokenCollector}
| \xd2 {TokenCollector}
| \xd3 {TokenCollector}
| \xd4 {TokenCollector}
| \xd5 {TokenCollector}
| \xd6 {TokenCollector}
| \xd7 {TokenCollector}
| \xd8 {TokenCollector}
| \xd9 {TokenCollector}
| \xda {TokenCollector}
| \xdb {TokenCollector}
| \xdc {TokenCollector}
| \xdd {TokenCollector}
| \xde {TokenCollector}
| \xdf {TokenCollector}
| \xe0 {TokenCollector}
| \xe1 {TokenCollector}
| \xe2 {TokenCollector}
| \xe3 {TokenCollector}
| \xe4 {TokenCollector}
| \xe5 {TokenCollector}
| \xe6 {TokenCollector}
| \xe7 {TokenCollector}
| \xe8 {TokenCollector}
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| \xe9 {TokenCollector}
| \xea {TokenCollector}
| \xeb {TokenCollector}
| \xec {TokenCollector}
| \xed {TokenCollector}
| \xee {TokenCollector}
| \xef {TokenCollector}
| \xf0 {TokenCollector}
| \xf1 {TokenCollector}
| \xf2 {TokenCollector}
| \xf3 {TokenCollector}
| \xf4 {TokenCollector}
| \xf5 {TokenCollector}
| \xf6 {TokenCollector}
| \xf7 {TokenCollector}
| \xf8 {TokenCollector}
| \xf9 {TokenCollector}
| \xfa {TokenCollector}
| \xfb {TokenCollector}
| \xfc {TokenCollector}
| \xfd {TokenCollector}
| \xfe {TokenCollector}
| \xff {TokenCollector}

##id -> ##letter ##id#1 {TokenCollector}
##letter -> A {TokenCollector}
| B {TokenCollector}
| C {TokenCollector}
| D {TokenCollector}
| E {TokenCollector}
| F {TokenCollector}
| G {TokenCollector}
| H {TokenCollector}
| I {TokenCollector}
| J {TokenCollector}
| K {TokenCollector}
| L {TokenCollector}
| M {TokenCollector}
| N {TokenCollector}
| O {TokenCollector}
| P {TokenCollector}
| Q {TokenCollector}
| R {TokenCollector}
| S {TokenCollector}
| T {TokenCollector}
| U {TokenCollector}
| V {TokenCollector}
| W {TokenCollector}
| X {TokenCollector}
| Y {TokenCollector}
| Z {TokenCollector}
| a {TokenCollector}
| b {TokenCollector}
| c {TokenCollector}
| d {TokenCollector}
| e {TokenCollector}
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| f {TokenCollector}
| g {TokenCollector}
| h {TokenCollector}
| i {TokenCollector}
| j {TokenCollector}
| k {TokenCollector}
| l {TokenCollector}
| m {TokenCollector}
| n {TokenCollector}
| o {TokenCollector}
| p {TokenCollector}
| q {TokenCollector}
| r {TokenCollector}
| s {TokenCollector}
| t {TokenCollector}
| u {TokenCollector}
| v {TokenCollector}
| w {TokenCollector}
| x {TokenCollector}
| y {TokenCollector}
| z {TokenCollector}

##line -> ##line#1 {TokenCollector}
##litchar -> & ! {TokenEmitter: !}
| & # {TokenEmitter: #}
| & n {TokenEmitter: LF}
| & b {TokenEmitter: SP}
| & t {TokenEmitter: HT}
| & c {TokenEmitter: BS}
| & 0 {TokenEmitter:}
| & 1 {TokenEmitter: &}
| & 2 {TokenEmitter: & &}
| & 3 {TokenEmitter: & & &}
| & 4 {TokenEmitter: & & & &}
| & 5 {TokenEmitter: & & & & &}
| & 6 {TokenEmitter: & & & & & &}
| & 7 {TokenEmitter: & & & & & & &}
| & 8 {TokenEmitter: & & & & & & & &}
| & 9 {TokenEmitter: & & & & & & & & &}
| ##litchar#3 ##hascii {TokenCollector}
| ##utf8s2 ##utf8cont {TokenCollector}
| ##utf8s3 ##utf8cont ##utf8cont {TokenCollector}
| ##utf8s4 ##utf8cont ##utf8cont ##utf8cont {TokenCollector}

##outchar -> ##outchar#2 ##char {TokenCollector}
##utf8cont -> \x80 {TokenCollector}
| \x81 {TokenCollector}
| \x82 {TokenCollector}
| \x83 {TokenCollector}
| \x84 {TokenCollector}
| \x85 {TokenCollector}
| \x86 {TokenCollector}
| \x87 {TokenCollector}
| \x88 {TokenCollector}
| \x89 {TokenCollector}
| \x8a {TokenCollector}
| \x8b {TokenCollector}
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| \x8c {TokenCollector}
| \x8d {TokenCollector}
| \x8e {TokenCollector}
| \x8f {TokenCollector}
| \x90 {TokenCollector}
| \x91 {TokenCollector}
| \x92 {TokenCollector}
| \x93 {TokenCollector}
| \x94 {TokenCollector}
| \x95 {TokenCollector}
| \x96 {TokenCollector}
| \x97 {TokenCollector}
| \x98 {TokenCollector}
| \x99 {TokenCollector}
| \x9a {TokenCollector}
| \x9b {TokenCollector}
| \x9c {TokenCollector}
| \x9d {TokenCollector}
| \x9e {TokenCollector}
| \x9f {TokenCollector}
| \xa0 {TokenCollector}
| \xa1 {TokenCollector}
| \xa2 {TokenCollector}
| \xa3 {TokenCollector}
| \xa4 {TokenCollector}
| \xa5 {TokenCollector}
| \xa6 {TokenCollector}
| \xa7 {TokenCollector}
| \xa8 {TokenCollector}
| \xa9 {TokenCollector}
| \xaa {TokenCollector}
| \xab {TokenCollector}
| \xac {TokenCollector}
| \xad {TokenCollector}
| \xae {TokenCollector}
| \xaf {TokenCollector}
| \xb0 {TokenCollector}
| \xb1 {TokenCollector}
| \xb2 {TokenCollector}
| \xb3 {TokenCollector}
| \xb4 {TokenCollector}
| \xb5 {TokenCollector}
| \xb6 {TokenCollector}
| \xb7 {TokenCollector}
| \xb8 {TokenCollector}
| \xb9 {TokenCollector}
| \xba {TokenCollector}
| \xbb {TokenCollector}
| \xbc {TokenCollector}
| \xbd {TokenCollector}
| \xbe {TokenCollector}
| \xbf {TokenCollector}

##utf8s2 -> \xc0 {TokenCollector}
| \xc1 {TokenCollector}
| \xc2 {TokenCollector}
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| \xc3 {TokenCollector}
| \xc4 {TokenCollector}
| \xc5 {TokenCollector}
| \xc6 {TokenCollector}
| \xc7 {TokenCollector}
| \xc8 {TokenCollector}
| \xc9 {TokenCollector}
| \xca {TokenCollector}
| \xcb {TokenCollector}
| \xcc {TokenCollector}
| \xcd {TokenCollector}
| \xce {TokenCollector}
| \xcf {TokenCollector}
| \xd0 {TokenCollector}
| \xd1 {TokenCollector}
| \xd2 {TokenCollector}
| \xd3 {TokenCollector}
| \xd4 {TokenCollector}
| \xd5 {TokenCollector}
| \xd6 {TokenCollector}
| \xd7 {TokenCollector}
| \xd8 {TokenCollector}
| \xd9 {TokenCollector}
| \xda {TokenCollector}
| \xdb {TokenCollector}
| \xdc {TokenCollector}
| \xdd {TokenCollector}
| \xde {TokenCollector}
| \xdf {TokenCollector}

##utf8s3 -> \xe0 {TokenCollector}
| \xe1 {TokenCollector}
| \xe2 {TokenCollector}
| \xe3 {TokenCollector}
| \xe4 {TokenCollector}
| \xe5 {TokenCollector}
| \xe6 {TokenCollector}
| \xe7 {TokenCollector}
| \xe8 {TokenCollector}
| \xe9 {TokenCollector}
| \xea {TokenCollector}
| \xeb {TokenCollector}
| \xec {TokenCollector}
| \xed {TokenCollector}
| \xee {TokenCollector}
| \xef {TokenCollector}

##utf8s4 -> \xf0 {TokenCollector}
| \xf1 {TokenCollector}
| \xf2 {TokenCollector}
| \xf3 {TokenCollector}
| \xf4 {TokenCollector}
| \xf5 {TokenCollector}
| \xf6 {TokenCollector}
| \xf7 {TokenCollector}

AllOfSpec -> a l l O f > ##blanks EqLink {TypeSheets::AllOfSpec(7=equations)}
Alternative -> ElementLink {RecordCaster: 0 -> TypeSheets::Alternative}
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AlternativeLink -> Alternative AlternativeLink#1
{TypeSheets::AlternativeLink(0=Alternative, 1=*)}

ArraySpec -> a r r a y > ##blanks EqLink {TypeSheets::ArraySpec(7=equations)}
AtomicSpec -> a t o m i c > ##blanks NameLink {TypeSheets::AtomicSpec(8=names)}
Blanks -> SP ##blanks [taboo: Blanks#1]

{ExternalCaster: String -> TypeSheets::Blanks}
CRange -> PosInt CRange#1 {TypeSheets::CRange(0=start, 1=*)}
CRangeLink -> CRange CRangeLink#1 {TypeSheets::CRangeLink(0=CRange, 1=*)}
CatDef -> ##eol CatDef#1 Id : CatDef#2 LF CatDef#3 SpecLink CatDef#4

{TypeSheets::CatDef(2=Category, 7=specifications, 1=*, 4=*, 6=*,
8=*)}

CatLink -> CatProduction CatLink#1 {TypeSheets::CatLink(0=production, 1=*)}
CatProduction -> ##blanks # Id > SP CatProduction#1

{TypeSheets::CatProduction(2=target, 5=*)}
CatVar -> # CatVarRec {RecordCaster: 1 -> TypeSheets::CatVar}
| # CatVarName {RecordCaster: 1 -> TypeSheets::CatVar}
| # CatVarId {RecordCaster: 1 -> TypeSheets::CatVar}

CatVarId -> = CatVarId#1 {TypeSheets::CatVarId(1=*)}
CatVarName -> > CatVarName#1 {TypeSheets::CatVarName(1=*)}
CatVarRec -> Id {TypeSheets::CatVarRec(0=name)}
Char -> ##litchar {ExternalCaster: String -> TypeSheets::Char}
CharLink -> Char CharLink#1 {TypeSheets::CharLink(0=Char, 1=*)}
Comment -> ##blanks ! ##blanks Line LF {TypeSheets::Comment(3=text)}
CommentLink -> Comment CommentLink#1 {TypeSheets::CommentLink(0=Comment, 1=*)}
CompleteSpec -> c o m p l e t e > ##blanks LF {TypeSheets::CompleteSpec()}
Element -> CatVar Element#1 {TypeSheets::Element(0=CatVar, 1=*)}
| LitVar Element#1 {TypeSheets::Element(0=LitVar, 1=*)}
| Char Element#1 {TypeSheets::Element(0=literal, 1=*)}
| LitId Element#1 {TypeSheets::Element(0=LitId, 1=*)}
| Function Element#1 {TypeSheets::Element(0=Function, 1=*)}
| Blanks {TypeSheets::Element(0=Blanks)}
| LineBreak {TypeSheets::Element(0=LineBreak)}
| & [ AlternativeLink & ] Element#2 {TypeSheets::Element(2=optional, 5=*)}
| & ( AlternativeLink & ) Element#3 {TypeSheets::Element(2=once, 5=*)}
| & { AlternativeLink & } Element#4 {TypeSheets::Element(2=anyTimes, 5=*)}
| & < AlternativeLink & > Element#5 {TypeSheets::Element(2=multiple, 5=*)}

ElementLink -> Element ElementLink#1 {TypeSheets::ElementLink(0=element, 1=*)}
EntryLink -> EntryLink#1 EntryLink#2 {TypeSheets::EntryLink(0=*, 1=*)}
EqLink -> EqLink#1 Id = Id EqLink#2 EqLink#3

{TypeSheets::EqLink(1=field, 3=Category, 0=*, 4=*, 5=*)}
Except -> & ^ Element {TypeSheets::Except(2=pattern)}
Expect -> & E Element {TypeSheets::Expect(2=pattern)}
FieldLink -> Id FieldLink#1 {TypeSheets::FieldLink(0=field, 1=*)}
FixedSpec -> f i x e d > ##blanks EqLink {TypeSheets::FixedSpec(7=equations)}
ForeignId -> ##foreignword {ExternalCaster: String -> TypeSheets::ForeignId}
FunArg -> ElementLink {RecordCaster: 0 -> TypeSheets::FunArg}
FunArgLink -> FunArg FunArgLink#1 {TypeSheets::FunArgLink(0=FunArg, 1=*)}
Function -> # ! Id ##blanks & ( Function#1 & ) {TypeSheets::Function(2=name, 6=*)}
Header -> Id ( Id , ##blanks Id ) : : Header#1 ##eol CommentLink Header#3

{TypeSheets::Header(0=TypeSystem, 2=language, 5=authority,
11=comments, 9=*, 12=*)}

Id -> ##id {ExternalCaster: String -> TypeSheets::Id}
IdTranslationLink -> : : ForeignId : ##blanks Id ##blanks LF IdTranslationLink#1

{TypeSheets::IdTranslationLink(2=ForeignId, 5=Id, 8=*)}
ImportLink -> Id ImportLink#1 ImportLink#3
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{TypeSheets::ImportLink(0=TypeSystem, 1=*, 2=*)}
IndexSpec -> i n d e x > ##blanks EqLink {TypeSheets::IndexSpec(7=equations)}
IrrLink -> IrrProduction IrrLink#1 {TypeSheets::IrrLink(0=production, 1=*)}
IrrProduction -> ##blanks # Id > > SP # Id = AlternativeLink IrrProduction#1

{TypeSheets::IrrProduction(2=target, 7=field, 9=production,
10=*)}

ItselfSpec -> i t s e l f > ##blanks NameLink {TypeSheets::ItselfSpec(8=names)}
Line -> ##line {ExternalCaster: String -> TypeSheets::Line}
LineBreak -> & & LF {TypeSheets::LineBreak()}
LitDef -> ##eol LitDef#1 : LitDef#2 LitLink

{TypeSheets::LitDef(4=productions, 1=*, 3=*)}
LitId -> & = & ( ElementLink & ) {TypeSheets::LitId(4=pattern)}
LitLink -> LitProduction LitLink#1 {TypeSheets::LitLink(0=production, 1=*)}
LitProduction -> ##blanks # Id > > SP # # Id = Substitution LitProduction#1

{TypeSheets::LitProduction(2=target, 8=field,
10=Substitution, 11=*)}

| ##blanks # Id > > SP # # Id = AlternativeLink LitProduction#2
{TypeSheets::LitProduction(2=target, 8=field, 10=production, 11=*)}

| ##blanks # Id > > SP # # Id = # [ CRangeLink ] LitProduction#3
{TypeSheets::LitProduction(2=target, 8=field, 12=cClass, 14=*)}

LitVar -> # # Id {TypeSheets::LitVar(2=name)}
MatchCase -> ##blanks Maximal {RecordCaster: 1 -> TypeSheets::MatchCase}

| ##blanks Expect {RecordCaster: 1 -> TypeSheets::MatchCase}
| ##blanks Taboo {RecordCaster: 1 -> TypeSheets::MatchCase}
| ##blanks Except {RecordCaster: 1 -> TypeSheets::MatchCase}

Maximal -> & + {ExternalCaster: String -> TypeSheets::Maximal}
NameLink -> NameLink#1 Id NameLink#2 {TypeSheets::NameLink(1=field, 0=*, 2=*)}
NothingElseSpec -> n o t h i n g E l s e > ##blanks LF

{TypeSheets::NothingElseSpec()}
NothingSpec -> n o t h i n g > ##blanks LF {TypeSheets::NothingSpec()}
OneOfSpec -> o n e O f > ##blanks EqLink {TypeSheets::OneOfSpec(7=equations)}
OnlySpec -> o n l y > ##blanks EqLink {TypeSheets::OnlySpec(6=equations)}
OptionalSpec -> o p t i o n a l > ##blanks EqLink

{TypeSheets::OptionalSpec(10=equations)}
OutChar -> ##outchar {ExternalCaster: String -> TypeSheets::OutChar}
OutCharLink -> OutChar OutCharLink#1 {TypeSheets::OutCharLink(0=OutChar, 1=*)}
PosInt -> ##digits {ExternalCaster: Integer -> TypeSheets::PosInt}
SomeOfSpec -> s o m e O f > ##blanks EqLink

{TypeSheets::SomeOfSpec(8=equations)}
SomeOfTypeSpec -> s o m e O f T y p e > ##blanks EqLink

{TypeSheets::SomeOfTypeSpec(12=equations)}
Spec -> AllOfSpec {RecordCaster: 0 -> TypeSheets::Spec}
| OneOfSpec {RecordCaster: 0 -> TypeSheets::Spec}
| SomeOfSpec {RecordCaster: 0 -> TypeSheets::Spec}
| OptionalSpec {RecordCaster: 0 -> TypeSheets::Spec}
| FixedSpec {RecordCaster: 0 -> TypeSheets::Spec}
| OnlySpec {RecordCaster: 0 -> TypeSheets::Spec}
| SomeOfTypeSpec {RecordCaster: 0 -> TypeSheets::Spec}
| ItselfSpec {RecordCaster: 0 -> TypeSheets::Spec}
| ArraySpec {RecordCaster: 0 -> TypeSheets::Spec}
| IndexSpec {RecordCaster: 0 -> TypeSheets::Spec}
| TemplateSpec {RecordCaster: 0 -> TypeSheets::Spec}
| NothingElseSpec {RecordCaster: 0 -> TypeSheets::Spec}
| NothingSpec {RecordCaster: 0 -> TypeSheets::Spec}
| UnionSpec {RecordCaster: 0 -> TypeSheets::Spec}
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| AtomicSpec {RecordCaster: 0 -> TypeSheets::Spec}
| CompleteSpec {RecordCaster: 0 -> TypeSheets::Spec}

SpecLink -> Spec SpecLink#1 {TypeSheets::SpecLink(0=Spec, 1=*)}
StartCategory -> : S T A R T = Id StartCategory#1

{TypeSheets::StartCategory(7=start, 8=*)}
Substitution -> CharLink & " Substitution#1 "

{TypeSheets::Substitution(0=input, 3=*)}
Taboo -> & T Element {TypeSheets::Taboo(2=pattern)}
Target -> FieldLink = VarLink Target#1

{TypeSheets::Target(0=sequence, 2=vars, 3=*)}
TargetLink -> Target TargetLink#1 {TypeSheets::TargetLink(0=Target, 1=*)}
Targets -> ##eol Targets#1 : T A R G E T > ##blanks TargetLink

{TypeSheets::Targets(11=targets, 1=*)}
TemplateSpec -> t e m p l a t e > ##blanks Id ##blanks LF

{TypeSheets::TemplateSpec(10=name)}
TranslationLink -> ##eol TranslationLink#1 : L A N G : ##blanks Id ##blanks LF

IdTranslationLink TranslationLink#2
{TypeSheets::TranslationLink(9=language, 12=idTranslations,

1=*, 13=*)}
TypeSheet -> Header TypeSheet#1 TypeSheet#2 EntryLink TypeSheet#3 TypeSheet#4

{TypeSheets::TypeSheet(0=Header, 3=entries, 1=*, 2=*, 4=*, 5=*)}
UnionSpec -> u n i o n > ##blanks NameLink {TypeSheets::UnionSpec(7=names)}
VarLink -> # Id VarLink#1 {TypeSheets::VarLink(1=name, 2=*)}
##blanks#1 -> SP ##blanks#1 {TokenCollector}
| [taboo: ##blanks#2] {TokenCollector}

##blanks#2 -> SP {TokenCollector}
##digits#1 -> ##digit ##digits#1 {TokenCollector}
| ##digit [taboo: ##digits#2] {TokenCollector}

##digits#2 -> ##digit {TokenCollector}
##eol#1 -> LF ##eol#1 {TokenCollector}
| LF [taboo: ##eol#2] {TokenCollector}

##eol#2 -> LF {TokenCollector}
##foreignword#1 -> ##foreignword#3 ##hchar ##foreignword#1 {TokenCollector}
| ##foreignword#3 ##hchar {TokenCollector}

##foreignword#2 -> : {TokenCollector}
##foreignword#3 -> [taboo: ##foreignword#2] {TokenCollector}
##id#1 -> ##id#2 ##id#1 {TokenCollector}
| [taboo: ##id#3] {TokenCollector}

##id#2 -> ##letter {TokenCollector}
| ##digit {TokenCollector}

##id#3 -> ##id#2 {TokenCollector}
##line#1 -> ##hchar ##line#1 {TokenCollector}
| [taboo: ##line#2] {TokenCollector}

##line#2 -> ##hchar {TokenCollector}
##litchar#1 -> ##litchar#2 {TokenCollector}
##litchar#2 -> ! {TokenCollector}
| # {TokenCollector}
| & {TokenCollector}
| SP {TokenCollector}

##litchar#3 -> [taboo: ##litchar#1] {TokenCollector}
##outchar#1 -> " {TokenCollector}
##outchar#2 -> [taboo: ##outchar#1] {TokenCollector}
AlternativeLink#1 -> & | AlternativeLink {2=next}
| {}

Blanks#1 -> ! {TokenCollector}
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CRange#1 -> - PosInt {1=end}
| {}

CRangeLink#1 -> , ##blanks CRangeLink {2=next}
| {}

CatDef#1 -> CommentLink {0=preComments}
| {}

CatDef#2 -> SP Id + {1=extends}
| {}

CatDef#3 -> CommentLink {0=postComments}
| {}

CatDef#4 -> CatLink CatDef#5 {0=productions, 1=*}
| {}

CatDef#5 -> IrrLink {0=irregular}
| {}

CatLink#1 -> CatLink {0=next}
| {}

CatProduction#1 -> AlternativeLink CatProduction#2 {0=production, 1=*}
| # CatProduction#3 {1=*}

CatProduction#2 -> CommentLink {0=comments}
| LF {}

CatProduction#3 -> SP CommentLink {1=comments}
| ##blanks LF {}

CatVarId#1 -> Id {0=name}
| & t h i s {}

CatVarName#1 -> Id {0=name}
| & t h i s {}

CharLink#1 -> CharLink {0=next}
| {}

CommentLink#1 -> CommentLink {0=next}
| {}

Element#1 -> MatchCase {0=match}
| {}

Element#2 -> MatchCase {0=match}
| {}

Element#3 -> MatchCase {0=match}
| {}

Element#4 -> MatchCase {0=match}
| {}

Element#5 -> MatchCase {0=match}
| {}

ElementLink#1 -> ElementLink {0=next}
| {}

EntryLink#1 -> LitDef {0=LitDef}
| CatDef {0=CatDef}

EntryLink#2 -> EntryLink {0=next}
| {}

EqLink#1 -> # Id : {1=name}
| {}

EqLink#2 -> Comment {0=comment}
| ##blanks LF {}

EqLink#3 -> ##blanks EqLink {1=next}
| {}

FieldLink#1 -> . FieldLink {1=next}
| {}

FunArgLink#1 -> & , FunArgLink {2=next}
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| {}
Function#1 -> FunArgLink {0=args}
| {}

Header#1 -> Header#2 ImportLink {1=imports, 0=*}
| {}

Header#2 -> ##blanks {}
| ##eol ##blanks {}

Header#3 -> TranslationLink {0=translations}
| {}

IdTranslationLink#1 -> IdTranslationLink {0=next}
| {}

ImportLink#1 -> . Id ImportLink#2 {1=Category, 2=*}
| {}

ImportLink#2 -> - > Id {2=newName}
| {}

ImportLink#3 -> , ImportLink#4 ImportLink {2=next, 1=*}
| {}

ImportLink#4 -> ##blanks {}
| ##eol ##blanks {}

IrrLink#1 -> IrrLink {0=next}
| {}

IrrProduction#1 -> CommentLink {0=comments}
| LF {}

LitDef#1 -> CommentLink {0=preComments}
| {}

LitDef#2 -> CommentLink {0=postComments}
| ##blanks LF {}

LitLink#1 -> LitLink {0=next}
| {}

LitProduction#1 -> CommentLink {0=comments}
| ##blanks LF {}

LitProduction#2 -> CommentLink {0=comments}
| LF {}

LitProduction#3 -> CommentLink {0=comments}
| ##blanks LF {}

NameLink#1 -> # Id : {1=name}
| {}

NameLink#2 -> , NameLink#3 NameLink {2=next, 1=*}
| LF {}

NameLink#3 -> SP {}
| ##eol ##blanks {}

OutCharLink#1 -> OutCharLink {0=next}
| {}

SpecLink#1 -> SpecLink {0=next}
| {}

StartCategory#1 -> Comment {0=comment}
| ##blanks LF {}

Substitution#1 -> OutCharLink {0=output}
| {}

Target#1 -> Comment {0=comment}
| ##blanks LF {}

TargetLink#1 -> ##blanks TargetLink {1=next}
| {}

Targets#1 -> CommentLink {0=preComments}
| {}
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TranslationLink#1 -> CommentLink {0=preComments}
| {}

TranslationLink#2 -> TranslationLink {0=next}
| {}

TypeSheet#1 -> Targets {0=Targets}
| {}

TypeSheet#2 -> StartCategory {0=StartCategory}
| {}

TypeSheet#3 -> ##eol CommentLink {1=postComments}
| {}

TypeSheet#4 -> ##eol {}
| {}

VarLink#1 -> SP VarLink {1=next}
| {}



Appendix C

Technical Reports

This appendix lists and briefly summarizes the technical reports authored or co-authored
by me that relate to the research for this thesis.
[TR1] K. Kofler. FMathL Formal Mathematical Language and how it relates to the Gram-
matical framework (GF). Slides, 2009. 12 slides. (Kofler [48])
http://www.grammaticalframework.org/doc/gfss/gfss-kevin.pdf
These slides were presented by me at the GF Resource Grammar Summer School 2009.
They give an introduction to the FMathL project and to its state of research as of 2009.
Then, they present ways to interoperate with GF that were considered at the time. The
solution proposed there was eventually implemented: support for PGF files (compiled
grammars from GF) in DynGenPar.
[TR2] K. Kofler and A. Neumaier. Limitations in Content MathML. Technical report,
University of Vienna, 2009. 5 pages. (Kofler & Neumaier [52])
http://www.mat.univie.ac.at/~neum/FMathL/content-mathml-limitations.pdf
This technical report summarizes issues and limitations with Content MathML we en-
countered during our effort to represent example formulas that reflect common usage in
mathematical texts. It concludes that Content MathML is not an adequate representation
for the goals of the FMathL and Concise projects, at least at the time the assessment was
made.
[TR3] K. Kofler and A. Neumaier. Limitations in OpenMath. Technical report, Univer-
sity of Vienna, 2010. 3 pages. (Kofler & Neumaier [53])
http://www.mat.univie.ac.at/~neum/FMathL/openmath-limitations.pdf
This technical report summarizes, in the same vein as the one above, the issues and
limitations with OpenMath we encountered during our effort to represent example for-
mulas that reflect common usage in mathematical texts. It concludes that, like Content
MathML, OpenMath is not an adequate representation for the goals of the FMathL and
Concise projects, at least at the time the assessment was made.
[TR4] K. Kofler and A. Neumaier. A Dynamic Generalized Parser for Common Math-
ematical Language. Work in Progress paper at CICM, 2011. 10 pages. (Kofler &
Neumaier [54])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar-wip.pdf
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This technical report introduced the DynGenPar algorithm and implementation to the
community. It was accepted as a work-in-progress paper in the Mathematical Knowl-
edge Management (MKM) track of the Conference on Intelligent Computer Mathematics
(CICM) in 2011. It was included in the informal work-in-progress proceedings and pre-
sented in a lightning talk. The contents roughly correspond to Chapter 2 of this thesis.
A revised and expanded version of this paper (Kofler & Neumaier [56]) was fully
reviewed and published in the following year’s CICM 2012, in the Digital Mathematics
Library (DML) track.
[TR5] K. Kofler and A. Neumaier. The DynGenPar Algorithm on an Example. Slides,
2011. 27 slides. (Kofler & Neumaier [55])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar-example.pdf
These slides show, on an example, how the DynGenPar algorithm works and how it
compares with existing approaches (pure top-down and pure bottom-up parsing). They
serve as an online supplement for the above technical report. I also used them in the
corresponding lightning talk and in a few other presentations.
[TR6] K. Kofler. The Concise Record Transformation Language. Technical report,
DAGOPT Optimization Technologies GmbH, 2016. 15 pages. (Kofler [49])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/rectrans.pdf
This technical report documents the Concise record transformation language. It is often
necessary in Concise to convert records from one representation (in one type system) to
another (in a different type system). For this purpose, Concise supports record
transformations. They are parsed with DynGenPar and executed by Concise. See
Sections 3.3.3 and 4.3. (The latter is based on this technical report.) This technical
report introduces the design principles of the record transformation language and
completely documents its syntax.
[TR7] K. Kofler and A. Neumaier. Programming in Concise – Code Sheets and Ele-
mentary Acts. Technical report, University of Vienna, 2017. 96 pages. (Kofler &
Neumaier [57])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/codesheets.pdf
This technical report presents the implementation of the Concise programming language.
It contains:

• the type sheet ElementaryActs.cnt (by A. Neumaier et al.), defining the low-level
elementary acts (see Section 4.2.1),

• the type sheet CodeSheets.cnt (by me) defining the code sheets (see Section 4.2.2),
i.e., the higher-level text representation,

• my two implementations of the record transformation from code sheets to elementary
acts (see Section 4.2.2).

[TR8] K. Kofler and A. Baharev. A Modeling Language for Chemical Processes. Techni-
cal report, University of Vienna, 2017. 42 pages. (Kofler & Baharev [51])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/chemprocmod.pdf
This technical report presents the implementation of ChemProcMod, the modeling lan-
guage for chemical processes described in Section 4.4 of this thesis. It contains the
ChemProcMod.cnt type sheet, as well as several model files in the ChemProcMod language:

https://www.tigen.org/kevin.kofler/fmathl/dyngenpar-example.pdf
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/rectrans.pdf
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/codesheets.pdf
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183

the unit library UnitLibrary.cpm and a few example models.
[TR9] K. Kofler. DynGenPar API documentation. Technical report, DAGOPT Optimiza-
tion Technologies GmbH, 2017. 183 pages. (Kofler [50])
https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/dyngenpar.pdf
This technical report was produced from the formatted comments I wrote in the source
code of DynGenPar, using the Doxygen tool (van Heesch [94]). It documents the
complete application programming interface (API) for DynGenPar, i.e., all the classes,
methods, and functions available for applications to use. The API is available for use in
both C++ and Java applications.

https://www.tigen.org/kevin.kofler/fmathl/dyngenpar/dyngenpar.pdf
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