The questions in this exercise sheet correspond to the chapter on finite differences, which is not included in the Numerische Mathematik 2 transcript. An online textbook (Lloyd N. Trefethen: Finite Difference and Spectral Methods for Ordinary and Partial Differential Equations) covering that (and additional) material can be found at http://people.maths.ox.ac.uk/trefethen/pdetext.html. The exercises below correspond to section 3.2 of that textbook.

The notation used is the same as in that textbook, in particular, \(u_t = \frac{\partial u}{\partial t}\), \(u_x = \frac{\partial u}{\partial x}\), \(u_{xx} = \frac{\partial^2 u}{\partial x^2}\), and \(v^n_j = v(x_j, t^n)\), the discretized version of \(u(x_j, t^n)\).

76. (a) Implement the Leap frog formula for the first-order wave equation \(u_t = u_x\):

\[v_{j}^{n+1} = v_{j}^{n-1} + \frac{k}{h}(v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}) \]

in a MATLAB or Octave program with the following inputs:
- a space step \(h\),
- a time step \(k\),
- a radius \(M\) such that the space interval considered is \([-M, M]\) (\(M\) should be a multiple of \(h\)),
- a target time \(T\), which should be a multiple of \(k\), and
- a list \(v_0\) of length \(2M/h + 1\) discretizing the initial conditions \(u_0(x)\), i.e. \(v_0(j) = u_0(-M + jh), 0 \leq j \leq 2M/h\),

and with as output a list \(v_T\) of length \(2M/h + 1\) discretizing the solution \(u(x, T)\) at the time \(T\).

Note: You can assume that \(u(x, t) = 0\) for \(x \notin [-M, M]\), i.e. ignore the term \(v_{j-1}^{n}\) at \(x = -M\) and the term \(v_{j+1}^{n}\) at \(x = M\).

In addition, at \(t = 0\), use \(v_{j}^{n-1} = v_{j}^{n} = v_0(j)\).

(b) Run your program on the hat-shaped initial data \(u_0(x) = \max(0, 1 - |x|)\) and the parameters \(h = 0.1, k = 0.04, M = 5\) and \(T = 1\).

(c) Plot the result and compare it with the exact solution

\[u(x, 1) = \max(0, 1 - |x + 1|). \]

77. (a) Implement the Lax-Wendroff formula for the first-order wave equation \(u_t = u_x\):

\[v_{j}^{n+1} = v_{j}^{n} + \frac{k}{2h}(v_{j+1}^{n} - v_{j}^{n} - v_{j-1}^{n}) + \frac{k^2}{2h^2}(v_{j+1}^{n} - 2v_{j}^{n} + v_{j-1}^{n}) \]

in a MATLAB or Octave program with same inputs and output as in example 76.

Note: Assume again that \(u(x, t) = 0\) for \(x \notin [-M, M]\).

(b) Run your program on the hat-shaped initial data \(u_0(x) = \max(0, 1 - |x|)\) and the parameters \(h = 0.1, k = 0.04, M = 5\) and \(T = 1\).

(c) Plot the result and compare it with the exact solution

\[u(x, 1) = \max(0, 1 - |x + 1|) \]

and with the result from example 76 (c).
78. (a) Implement the **Euler** formula for the **heat equation** \(u_t = u_{xx} \):

\[
v^{n+1}_j = v^n_j + \frac{k}{h^2} (v^{n+1}_{j+1} - 2v^n_j + v^n_{j-1})
\]

in a MATLAB or Octave program with same inputs and output as in examples 76 and 77.

Note: You can assume that \(u(x, t) \approx 0 \) for \(x \not\in [-M, M] \), i.e. ignore the term \(v^n_{j-1} \) at \(x = -M \) and the term \(v^n_{j+1} \) at \(x = M \) as if they were exactly zero.

(b) Run your program on the hat-shaped initial data \(u_0(x) = \max(0, 1 - |x|) \) and the parameters \(h = 0.1 \), \(k = 0.004 \), \(M = 5 \) and \(T = 1 \).

Note: We need a smaller time step \(k \) here than in the examples 76 and 77 because we have a \(\frac{k}{h^2} \) term in the formula instead of \(\frac{k}{h} \).

(c) Plot the result.